1 |
C $Header: /u/gcmpack/MITgcm_contrib/bling/pkg/bling_airseaflux.F,v 1.1 2014/05/23 17:33:42 mmazloff Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "BLING_OPTIONS.h" |
5 |
#include "PTRACERS_OPTIONS.h" |
6 |
|
7 |
CBOP |
8 |
subroutine BLING_AIRSEAFLUX( |
9 |
I PTR_DIC, PTR_ALK, PTR_NUT, PTR_O2, |
10 |
O SGDIC, SGO2, |
11 |
I bi, bj, imin, imax, jmin, jmax, |
12 |
I myIter, myTime, myThid) |
13 |
|
14 |
C ================================================================= |
15 |
C | subroutine bling_airseaflux |
16 |
C | o Calculate the carbon and oxygen air-sea flux terms |
17 |
C | Adapted from pkg/dic/ |
18 |
C | - Get atmospheric pCO2 value |
19 |
C | Option 1: constant value, default 268.d-6, can be changed in |
20 |
C | data.bling |
21 |
C | Option 2: read 2D field using EXF pkg |
22 |
C ================================================================= |
23 |
|
24 |
implicit none |
25 |
|
26 |
C === Global variables === |
27 |
#include "SIZE.h" |
28 |
#include "DYNVARS.h" |
29 |
#include "EEPARAMS.h" |
30 |
#include "PARAMS.h" |
31 |
#include "GRID.h" |
32 |
#include "FFIELDS.h" |
33 |
#include "BLING_VARS.h" |
34 |
#ifdef ALLOW_EXF |
35 |
# include "EXF_FIELDS.h" |
36 |
#endif |
37 |
#ifdef ALLOW_AUTODIFF_TAMC |
38 |
# include "tamc.h" |
39 |
#endif |
40 |
|
41 |
C === Routine arguments === |
42 |
C myTime :: current time |
43 |
C myIter :: current timestep |
44 |
C myThid :: thread Id. number |
45 |
_RL myTime |
46 |
INTEGER myIter |
47 |
INTEGER myThid |
48 |
INTEGER iMin, iMax, jMin, jMax, bi, bj |
49 |
C === Input === |
50 |
C PTR_DIC :: DIC tracer field |
51 |
C PTR_ALK :: alkalinity tracer field |
52 |
C PTR_NUT :: macro-nutrient tracer field |
53 |
C PTR_O2 :: oxygen tracer field |
54 |
_RL PTR_DIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
55 |
_RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
56 |
_RL PTR_NUT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
57 |
_RL PTR_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
58 |
C === Output === |
59 |
C SGDIC :: tendency of DIC due to air-sea exchange |
60 |
C SGO2 :: tendency od O2 due to air-sea exchange |
61 |
_RL SGDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
_RL SGO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
63 |
|
64 |
|
65 |
#ifdef ALLOW_PTRACERS |
66 |
|
67 |
C === Local variables === |
68 |
C i,j :: Loop counters |
69 |
INTEGER i,j,klev |
70 |
C Number of iterations for pCO2 solvers |
71 |
_RL co3dummy |
72 |
_RL Kwexch_Pre (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
73 |
C Solubility relation coefficients |
74 |
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
75 |
_RL pCO2sat (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
76 |
_RL Kwexch (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
77 |
_RL pisvel (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
78 |
C local variables for carbon chem |
79 |
_RL surfalk (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
80 |
_RL surfphos (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
81 |
_RL surfsi (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
82 |
_RL surftemp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
83 |
_RL surfsalt (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
84 |
_RL surfdic (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
85 |
C o2 solubility relation coefficients |
86 |
_RL SchmidtNoO2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
87 |
_RL O2sat (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
88 |
_RL Kwexch_o2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
89 |
_RL FluxO2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
90 |
_RL aTT |
91 |
_RL aTK |
92 |
_RL aTS |
93 |
_RL aTS2 |
94 |
_RL aTS3 |
95 |
_RL aTS4 |
96 |
_RL aTS5 |
97 |
_RL o2s |
98 |
_RL ttemp |
99 |
_RL stemp |
100 |
_RL oCnew |
101 |
CEOP |
102 |
|
103 |
C---------------------------------------------------------------------- |
104 |
C First, carbon |
105 |
C---------------------------------------------------------------------- |
106 |
klev=1 |
107 |
C determine inorganic carbon chem coefficients |
108 |
DO j=jmin,jmax |
109 |
DO i=imin,imax |
110 |
|
111 |
surfalk(i,j) = PTR_ALK(i,j,1) |
112 |
& * maskC(i,j,1,bi,bj) |
113 |
surfphos(i,j) = PTR_NUT(i,j,1)/NUTfac |
114 |
& * maskC(i,j,1,bi,bj) |
115 |
|
116 |
C FOR NON-INTERACTIVE Si |
117 |
surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,1,bi,bj) |
118 |
surftemp(i,j) = theta(i,j,1,bi,bj) |
119 |
surfsalt(i,j) = salt(i,j,1,bi,bj) |
120 |
surfdic(i,j) = PTR_DIC(i,j,1) |
121 |
|
122 |
ENDDO |
123 |
ENDDO |
124 |
|
125 |
CALL CARBON_COEFFS( |
126 |
I surftemp,surfsalt, |
127 |
I bi,bj,iMin,iMax,jMin,jMax,myThid) |
128 |
|
129 |
DO j=jmin,jmax |
130 |
DO i=imin,imax |
131 |
C Compute Kwexch_Pre which is re-used for flux of O2 |
132 |
caxx Atmos pressure is assumed to be 1 atm |
133 |
|
134 |
c Read EXF winds instead of value from file: |
135 |
#ifdef ALLOW_EXF |
136 |
wind(i,j,bi,bj) = wspeed(i,j,bi,bj) |
137 |
#endif |
138 |
|
139 |
C Pre-compute part of exchange coefficient: pisvel*(1-fice) |
140 |
C Schmidt number is accounted for later |
141 |
pisvel(i,j) = 0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 |
142 |
Kwexch_Pre(i,j) = pisvel(i,j) |
143 |
& * (1. _d 0 - FIce(i,j,bi,bj)) |
144 |
|
145 |
ENDDO |
146 |
ENDDO |
147 |
|
148 |
c pCO2 solver... |
149 |
|
150 |
CADJ STORE ph = comlev1, key = ikey_dynamics |
151 |
|
152 |
C$TAF LOOP = parallel |
153 |
DO j=jmin,jmax |
154 |
C$TAF LOOP = parallel |
155 |
DO i=imin,imax |
156 |
|
157 |
IF ( maskC(i,j,klev,bi,bj).NE.0. _d 0 ) THEN |
158 |
CALL CALC_PCO2_APPROX( |
159 |
I surftemp(i,j),surfsalt(i,j), |
160 |
I surfdic(i,j), surfphos(i,j), |
161 |
I surfsi(i,j),surfalk(i,j), |
162 |
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
163 |
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
164 |
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
165 |
I aksi(i,j,bi,bj),akf(i,j,bi,bj), |
166 |
I ak0(i,j,bi,bj), fugf(i,j,bi,bj), |
167 |
I ff(i,j,bi,bj), |
168 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
169 |
U pH(i,j,klev,bi,bj),pCO2(i,j,bi,bj),co3dummy, |
170 |
I i,j,klev,bi,bj,myIter,myThid ) |
171 |
ELSE |
172 |
pCO2(i,j,bi,bj) = 0. _d 0 |
173 |
ENDIF |
174 |
ENDDO |
175 |
ENDDO |
176 |
|
177 |
DO j=jmin,jmax |
178 |
DO i=imin,imax |
179 |
|
180 |
IF ( maskC(i,j,1,bi,bj).NE.0. _d 0 ) THEN |
181 |
C calculate SCHMIDT NO. for CO2 |
182 |
SchmidtNoDIC(i,j) = |
183 |
& sca1 |
184 |
& + sca2 * theta(i,j,1,bi,bj) |
185 |
& + sca3 * theta(i,j,1,bi,bj)*theta(i,j,1,bi,bj) |
186 |
& + sca4 * theta(i,j,1,bi,bj)*theta(i,j,1,bi,bj) |
187 |
& *theta(i,j,1,bi,bj) |
188 |
c make sure Schmidt number is not negative (will happen if temp>39C) |
189 |
SchmidtNoDIC(i,j)=max(1.0 _d -2, SchmidtNoDIC(i,j)) |
190 |
|
191 |
C First determine local saturation pCO2 |
192 |
#ifdef USE_EXFCO2 |
193 |
pCO2sat(i,j) = apco2(i,j,bi,bj) |
194 |
#else |
195 |
pCO2sat(i,j) = bling_pCO2 |
196 |
#endif |
197 |
|
198 |
#ifndef BLING_ADJOINT_SAFE |
199 |
c Correct for atmospheric pressure |
200 |
pCO2sat(i,j) = pCO2sat(i,j)*AtmosP(i,j,bi,bj) |
201 |
#endif |
202 |
|
203 |
C then account for Schmidt number |
204 |
Kwexch(i,j) = Kwexch_Pre(i,j) |
205 |
& / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) |
206 |
|
207 |
C Calculate flux in terms of DIC units using K0, solubility |
208 |
c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean) |
209 |
FluxCO2(i,j,bi,bj) = |
210 |
& Kwexch(i,j)*( |
211 |
& ff(i,j,bi,bj)*pCO2sat(i,j) - |
212 |
& pCO2(i,j,bi,bj)*fugf(i,j,bi,bj) |
213 |
& *ak0(i,j,bi,bj) ) |
214 |
& |
215 |
ELSE |
216 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
217 |
ENDIF |
218 |
|
219 |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
220 |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
221 |
|
222 |
ENDDO |
223 |
ENDDO |
224 |
|
225 |
C update tendency |
226 |
DO j=jmin,jmax |
227 |
DO i=imin,imax |
228 |
SGDIC(i,j)= recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
229 |
& *FluxCO2(i,j,bi,bj) |
230 |
ENDDO |
231 |
ENDDO |
232 |
|
233 |
C---------------------------------------------------------------------- |
234 |
C Now oxygen |
235 |
C---------------------------------------------------------------------- |
236 |
|
237 |
C calculate SCHMIDT NO. for O2 |
238 |
DO j=jmin,jmax |
239 |
DO i=imin,imax |
240 |
IF (maskC(i,j,1,bi,bj).NE.0.) THEN |
241 |
ttemp = theta(i,j,1,bi,bj) |
242 |
stemp = salt(i,j,1,bi,bj) |
243 |
|
244 |
SchmidtNoO2(i,j) = |
245 |
& sox1 |
246 |
& + sox2 * ttemp |
247 |
& + sox3 * ttemp*ttemp |
248 |
& + sox4 * ttemp*ttemp*ttemp |
249 |
|
250 |
C Determine surface flux of O2 |
251 |
C exchange coeff accounting for ice cover and Schmidt no. |
252 |
C Kwexch_Pre= pisvel*(1-fice): previously computed above |
253 |
|
254 |
Kwexch_o2(i,j) = Kwexch_Pre(i,j) |
255 |
& / sqrt(SchmidtNoO2(i,j)/660.0 _d 0) |
256 |
|
257 |
C determine saturation O2 |
258 |
C using Garcia and Gordon (1992), L&O (mistake in original ?) |
259 |
aTT = 298.15 _d 0 -ttemp |
260 |
aTK = 273.15 _d 0 +ttemp |
261 |
aTS = log(aTT/aTK) |
262 |
aTS2 = aTS*aTS |
263 |
aTS3 = aTS2*aTS |
264 |
aTS4 = aTS3*aTS |
265 |
aTS5 = aTS4*aTS |
266 |
|
267 |
oCnew = oA0 + oA1*aTS + oA2*aTS2 + oA3*aTS3 + |
268 |
& oA4*aTS4 + oA5*aTS5 |
269 |
& + stemp*(oB0 + oB1*aTS + oB2*aTS2 + oB3*aTS3) |
270 |
& + oC0*(stemp*stemp) |
271 |
|
272 |
o2s = EXP(oCnew) |
273 |
|
274 |
c Convert from ml/l to mol/m^3 |
275 |
O2sat(i,j) = o2s/22391.6 _d 0 * 1. _d 3 |
276 |
|
277 |
C Determine flux, inc. correction for local atmos surface pressure |
278 |
FluxO2(i,j) = Kwexch_o2(i,j)* |
279 |
& (AtmosP(i,j,bi,bj)*O2sat(i,j) |
280 |
& - PTR_O2(i,j,1)) |
281 |
ELSE |
282 |
FluxO2(i,j) = 0. _d 0 |
283 |
ENDIF |
284 |
|
285 |
ENDDO |
286 |
ENDDO |
287 |
|
288 |
C update surface tendencies |
289 |
DO j=jmin,jmax |
290 |
DO i=imin,imax |
291 |
SGO2(i,j)= FluxO2(i,j) |
292 |
& *recip_drF(1) * recip_hFacC(i,j,1,bi,bj) |
293 |
ENDDO |
294 |
ENDDO |
295 |
|
296 |
_EXCH_XY_RL( pCO2, mythid) |
297 |
_EXCH_XYZ_RL( pH, mythid) |
298 |
|
299 |
#endif /* ALLOW_PTRACER */ |
300 |
|
301 |
RETURN |
302 |
END |