| 1 |
C $Header: $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "BLING_OPTIONS.h" |
| 5 |
#include "PTRACERS_OPTIONS.h" |
| 6 |
|
| 7 |
CBOP |
| 8 |
subroutine BLING_AIRSEAFLUX( |
| 9 |
I PTR_DIC, PTR_ALK, PTR_O2, PTR_NO3, PTR_PO4, |
| 10 |
O SGDIC, SGO2, |
| 11 |
I bi, bj, imin, imax, jmin, jmax, |
| 12 |
I myIter, myTime, myThid) |
| 13 |
|
| 14 |
C ================================================================= |
| 15 |
C | subroutine bling_airseaflux |
| 16 |
C | o Calculate the carbon and oxygen air-sea flux terms |
| 17 |
C | Adapted from pkg/dic/ |
| 18 |
C | - Get atmospheric pCO2 value |
| 19 |
C | Option 1: constant value, default 268.d-6, can be changed in |
| 20 |
C | data.bling |
| 21 |
C | Option 2: read 2D field using EXF pkg |
| 22 |
C ================================================================= |
| 23 |
|
| 24 |
implicit none |
| 25 |
|
| 26 |
C === Global variables === |
| 27 |
#include "SIZE.h" |
| 28 |
#include "DYNVARS.h" |
| 29 |
#include "EEPARAMS.h" |
| 30 |
#include "PARAMS.h" |
| 31 |
#include "GRID.h" |
| 32 |
#include "FFIELDS.h" |
| 33 |
#include "BLING_VARS.h" |
| 34 |
#ifdef ALLOW_EXF |
| 35 |
# include "EXF_FIELDS.h" |
| 36 |
#endif |
| 37 |
#ifdef ALLOW_AUTODIFF |
| 38 |
# include "tamc.h" |
| 39 |
#endif |
| 40 |
|
| 41 |
C === Routine arguments === |
| 42 |
C myTime :: current time |
| 43 |
C myIter :: current timestep |
| 44 |
C myThid :: thread Id. number |
| 45 |
_RL myTime |
| 46 |
INTEGER myIter |
| 47 |
INTEGER myThid |
| 48 |
INTEGER iMin, iMax, jMin, jMax, bi, bj |
| 49 |
C === Input === |
| 50 |
C PTR_DIC :: DIC tracer field |
| 51 |
C PTR_ALK :: alkalinity tracer field |
| 52 |
C PTR_NO3 :: nitrate tracer field |
| 53 |
C PTR_PO4 :: phosphate tracer field |
| 54 |
C PTR_O2 :: oxygen tracer field |
| 55 |
_RL PTR_DIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 56 |
_RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 57 |
_RL PTR_NO3(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 58 |
_RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 59 |
_RL PTR_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 60 |
C === Output === |
| 61 |
C SGDIC :: tendency of DIC due to air-sea exchange |
| 62 |
C SGO2 :: tendency od O2 due to air-sea exchange |
| 63 |
_RL SGDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 64 |
_RL SGO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 65 |
|
| 66 |
|
| 67 |
#ifdef ALLOW_PTRACERS |
| 68 |
|
| 69 |
C === Local variables === |
| 70 |
C i,j :: Loop counters |
| 71 |
INTEGER i,j,klev |
| 72 |
C Number of iterations for pCO2 solvers |
| 73 |
_RL co3dummy |
| 74 |
_RL Kwexch_Pre (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 75 |
C Solubility relation coefficients |
| 76 |
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 77 |
_RL pCO2sat (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 78 |
_RL Kwexch (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 79 |
_RL pisvel (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 80 |
C local variables for carbon chem |
| 81 |
_RL surfalk (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 82 |
_RL surfphos (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 83 |
_RL surfsi (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 84 |
_RL surftemp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 85 |
_RL surfsalt (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 86 |
_RL surfdic (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 87 |
C o2 solubility relation coefficients |
| 88 |
_RL SchmidtNoO2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 89 |
_RL O2sat (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 90 |
_RL Kwexch_o2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 91 |
_RL FluxO2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 92 |
_RL aTT |
| 93 |
_RL aTK |
| 94 |
_RL aTS |
| 95 |
_RL aTS2 |
| 96 |
_RL aTS3 |
| 97 |
_RL aTS4 |
| 98 |
_RL aTS5 |
| 99 |
_RL o2s |
| 100 |
_RL ttemp |
| 101 |
_RL stemp |
| 102 |
_RL oCnew |
| 103 |
CEOP |
| 104 |
|
| 105 |
C---------------------------------------------------------------------- |
| 106 |
C First, carbon |
| 107 |
C---------------------------------------------------------------------- |
| 108 |
klev=1 |
| 109 |
C determine inorganic carbon chem coefficients |
| 110 |
DO j=jmin,jmax |
| 111 |
DO i=imin,imax |
| 112 |
|
| 113 |
surfalk(i,j) = PTR_ALK(i,j,1) |
| 114 |
& * maskC(i,j,1,bi,bj) |
| 115 |
surfphos(i,j) = PTR_PO4(i,j,1) |
| 116 |
& * maskC(i,j,1,bi,bj) |
| 117 |
|
| 118 |
C FOR NON-INTERACTIVE Si |
| 119 |
surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,1,bi,bj) |
| 120 |
surftemp(i,j) = theta(i,j,1,bi,bj) |
| 121 |
surfsalt(i,j) = salt(i,j,1,bi,bj) |
| 122 |
surfdic(i,j) = PTR_DIC(i,j,1) |
| 123 |
|
| 124 |
ENDDO |
| 125 |
ENDDO |
| 126 |
|
| 127 |
CALL CARBON_COEFFS( |
| 128 |
I surftemp,surfsalt, |
| 129 |
I bi,bj,iMin,iMax,jMin,jMax,myThid) |
| 130 |
|
| 131 |
DO j=jmin,jmax |
| 132 |
DO i=imin,imax |
| 133 |
C Compute Kwexch_Pre which is re-used for flux of O2 |
| 134 |
caxx Atmos pressure is assumed to be 1 atm |
| 135 |
|
| 136 |
c Read EXF winds instead of value from file: |
| 137 |
#ifdef ALLOW_EXF |
| 138 |
wind(i,j,bi,bj) = wspeed(i,j,bi,bj) |
| 139 |
#endif |
| 140 |
|
| 141 |
C Pre-compute part of exchange coefficient: pisvel*(1-fice) |
| 142 |
C Schmidt number is accounted for later |
| 143 |
pisvel(i,j) = 0.337 _d 0 * wind(i,j,bi,bj)**2/3.6 _d 5 |
| 144 |
Kwexch_Pre(i,j) = pisvel(i,j) |
| 145 |
& * (1. _d 0 - FIce(i,j,bi,bj)) |
| 146 |
|
| 147 |
ENDDO |
| 148 |
ENDDO |
| 149 |
|
| 150 |
c pCO2 solver... |
| 151 |
|
| 152 |
CADJ STORE ph = comlev1, key = ikey_dynamics |
| 153 |
|
| 154 |
C$TAF LOOP = parallel |
| 155 |
DO j=jmin,jmax |
| 156 |
C$TAF LOOP = parallel |
| 157 |
DO i=imin,imax |
| 158 |
|
| 159 |
IF ( maskC(i,j,klev,bi,bj).NE.0. _d 0 ) THEN |
| 160 |
CALL CALC_PCO2_APPROX( |
| 161 |
I surftemp(i,j),surfsalt(i,j), |
| 162 |
I surfdic(i,j), surfphos(i,j), |
| 163 |
I surfsi(i,j),surfalk(i,j), |
| 164 |
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
| 165 |
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
| 166 |
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
| 167 |
I aksi(i,j,bi,bj),akf(i,j,bi,bj), |
| 168 |
I ak0(i,j,bi,bj), fugf(i,j,bi,bj), |
| 169 |
I ff(i,j,bi,bj), |
| 170 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
| 171 |
U pH(i,j,klev,bi,bj),pCO2(i,j,bi,bj),co3dummy, |
| 172 |
I i,j,klev,bi,bj,myIter,myThid ) |
| 173 |
ELSE |
| 174 |
pCO2(i,j,bi,bj) = 0. _d 0 |
| 175 |
ENDIF |
| 176 |
|
| 177 |
ENDDO |
| 178 |
ENDDO |
| 179 |
|
| 180 |
DO j=jmin,jmax |
| 181 |
DO i=imin,imax |
| 182 |
|
| 183 |
IF ( maskC(i,j,1,bi,bj).NE.0. _d 0 ) THEN |
| 184 |
C calculate SCHMIDT NO. for CO2 |
| 185 |
SchmidtNoDIC(i,j) = |
| 186 |
& sca1 |
| 187 |
& + sca2 * theta(i,j,1,bi,bj) |
| 188 |
& + sca3 * theta(i,j,1,bi,bj)*theta(i,j,1,bi,bj) |
| 189 |
& + sca4 * theta(i,j,1,bi,bj)*theta(i,j,1,bi,bj) |
| 190 |
& *theta(i,j,1,bi,bj) |
| 191 |
c make sure Schmidt number is not negative (will happen if temp>39C) |
| 192 |
SchmidtNoDIC(i,j)=max(1.0 _d -2, SchmidtNoDIC(i,j)) |
| 193 |
|
| 194 |
C First determine local saturation pCO2 |
| 195 |
#ifdef USE_EXFCO2 |
| 196 |
pCO2sat(i,j) = apco2(i,j,bi,bj) |
| 197 |
#else |
| 198 |
pCO2sat(i,j) = bling_pCO2 |
| 199 |
#endif |
| 200 |
|
| 201 |
#ifndef BLING_ADJOINT_SAFE |
| 202 |
c Correct for atmospheric pressure |
| 203 |
pCO2sat(i,j) = pCO2sat(i,j)*AtmosP(i,j,bi,bj) |
| 204 |
#endif |
| 205 |
|
| 206 |
C then account for Schmidt number |
| 207 |
Kwexch(i,j) = Kwexch_Pre(i,j) |
| 208 |
& / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) |
| 209 |
|
| 210 |
C Calculate flux in terms of DIC units using K0, solubility |
| 211 |
c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean) |
| 212 |
FluxCO2(i,j,bi,bj) = |
| 213 |
& Kwexch(i,j)*( |
| 214 |
& ff(i,j,bi,bj)*pCO2sat(i,j) - |
| 215 |
& pCO2(i,j,bi,bj)*fugf(i,j,bi,bj) |
| 216 |
& *ak0(i,j,bi,bj) ) |
| 217 |
& |
| 218 |
ELSE |
| 219 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
| 220 |
ENDIF |
| 221 |
|
| 222 |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
| 223 |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
| 224 |
|
| 225 |
ENDDO |
| 226 |
ENDDO |
| 227 |
|
| 228 |
C update tendency |
| 229 |
DO j=jmin,jmax |
| 230 |
DO i=imin,imax |
| 231 |
SGDIC(i,j)= recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
| 232 |
& *FluxCO2(i,j,bi,bj) |
| 233 |
ENDDO |
| 234 |
ENDDO |
| 235 |
|
| 236 |
C---------------------------------------------------------------------- |
| 237 |
C Now oxygen |
| 238 |
C---------------------------------------------------------------------- |
| 239 |
|
| 240 |
C calculate SCHMIDT NO. for O2 |
| 241 |
DO j=jmin,jmax |
| 242 |
DO i=imin,imax |
| 243 |
IF (maskC(i,j,1,bi,bj).NE.0.) THEN |
| 244 |
ttemp = theta(i,j,1,bi,bj) |
| 245 |
stemp = salt(i,j,1,bi,bj) |
| 246 |
|
| 247 |
SchmidtNoO2(i,j) = |
| 248 |
& sox1 |
| 249 |
& + sox2 * ttemp |
| 250 |
& + sox3 * ttemp*ttemp |
| 251 |
& + sox4 * ttemp*ttemp*ttemp |
| 252 |
|
| 253 |
C Determine surface flux of O2 |
| 254 |
C exchange coeff accounting for ice cover and Schmidt no. |
| 255 |
C Kwexch_Pre= pisvel*(1-fice): previously computed above |
| 256 |
|
| 257 |
Kwexch_o2(i,j) = Kwexch_Pre(i,j) |
| 258 |
& / sqrt(SchmidtNoO2(i,j)/660.0 _d 0) |
| 259 |
|
| 260 |
C determine saturation O2 |
| 261 |
C using Garcia and Gordon (1992), L&O (mistake in original ?) |
| 262 |
aTT = 298.15 _d 0 -ttemp |
| 263 |
aTK = 273.15 _d 0 +ttemp |
| 264 |
aTS = log(aTT/aTK) |
| 265 |
aTS2 = aTS*aTS |
| 266 |
aTS3 = aTS2*aTS |
| 267 |
aTS4 = aTS3*aTS |
| 268 |
aTS5 = aTS4*aTS |
| 269 |
|
| 270 |
oCnew = oA0 + oA1*aTS + oA2*aTS2 + oA3*aTS3 + |
| 271 |
& oA4*aTS4 + oA5*aTS5 |
| 272 |
& + stemp*(oB0 + oB1*aTS + oB2*aTS2 + oB3*aTS3) |
| 273 |
& + oC0*(stemp*stemp) |
| 274 |
|
| 275 |
o2s = EXP(oCnew) |
| 276 |
|
| 277 |
c Convert from ml/l to mol/m^3 |
| 278 |
O2sat(i,j) = o2s/22391.6 _d 0 * 1. _d 3 |
| 279 |
|
| 280 |
C Determine flux, inc. correction for local atmos surface pressure |
| 281 |
FluxO2(i,j) = Kwexch_o2(i,j)* |
| 282 |
& (AtmosP(i,j,bi,bj)*O2sat(i,j) |
| 283 |
& - PTR_O2(i,j,1)) |
| 284 |
ELSE |
| 285 |
FluxO2(i,j) = 0. _d 0 |
| 286 |
ENDIF |
| 287 |
|
| 288 |
ENDDO |
| 289 |
ENDDO |
| 290 |
|
| 291 |
C update surface tendencies |
| 292 |
DO j=jmin,jmax |
| 293 |
DO i=imin,imax |
| 294 |
SGO2(i,j)= FluxO2(i,j) |
| 295 |
& *recip_drF(1) * recip_hFacC(i,j,1,bi,bj) |
| 296 |
ENDDO |
| 297 |
ENDDO |
| 298 |
|
| 299 |
_EXCH_XY_RL( pCO2, mythid) |
| 300 |
_EXCH_XYZ_RL( pH, mythid) |
| 301 |
|
| 302 |
#endif /* ALLOW_PTRACER */ |
| 303 |
|
| 304 |
RETURN |
| 305 |
END |