1 |
C $Header: /u/gcmpack/MITgcm_contrib/bbl/code/mypackage_calc_rhs.F,v 1.4 2011/08/06 02:10:27 dimitri Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "BBL_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
C !ROUTINE: BBL_CALC_RHS |
8 |
|
9 |
C !INTERFACE: |
10 |
SUBROUTINE MYPACKAGE_CALC_RHS( |
11 |
I myTime, myIter, myThid ) |
12 |
|
13 |
C !DESCRIPTION: |
14 |
C Calculate tendency of tracers due to bottom boundary layer. |
15 |
C Scheme is currently coded for dTtracerLev(k) .EQ. deltaT. |
16 |
|
17 |
C !USES: |
18 |
IMPLICIT NONE |
19 |
#include "SIZE.h" |
20 |
#include "EEPARAMS.h" |
21 |
#include "PARAMS.h" |
22 |
#include "GRID.h" |
23 |
#include "DYNVARS.h" |
24 |
#include "BBL.h" |
25 |
|
26 |
C !INPUT PARAMETERS: |
27 |
C myTime :: Current time in simulation |
28 |
C myIter :: Current time-step number |
29 |
C myThid :: my Thread Id number |
30 |
_RL myTime |
31 |
INTEGER myIter, myThid |
32 |
|
33 |
C !OUTPUT PARAMETERS: |
34 |
|
35 |
C !LOCAL VARIABLES: |
36 |
C bi,bj :: Tile indices |
37 |
C i,j :: Loop indices |
38 |
C kBot :: k index of bottommost wet grid box |
39 |
C kLowC1 :: k index of bottommost (i,j) cell |
40 |
C kLowC2 :: k index of bottommost (i+1,j) or (i,j+1) cell |
41 |
C kl :: k index at which to compare 2 cells |
42 |
C resThk :: thickness of bottommost wet grid box minus bbl_eta |
43 |
C resTheta :: temperature of this residual volume |
44 |
C resSalt :: salinity of this residual volume |
45 |
C deltaRho :: density change |
46 |
C deltaDpt :: depth change |
47 |
C bbl_tend :: temporary variable for tendency terms |
48 |
C sloc :: salinity of bottommost wet grid box |
49 |
C tloc :: temperature of bottommost wet grid box |
50 |
C rholoc :: in situ density of bottommost wet grid box |
51 |
C rhoBBL :: in situ density of bottom boundary layer |
52 |
C fZon :: Zonal flux |
53 |
C fMer :: Meridional flux |
54 |
C bbl_rho1 :: local (i,j) density |
55 |
C bbl_rho2 :: local (i+1, j) or (i,j+1) density |
56 |
INTEGER bi, bj |
57 |
INTEGER i, j, kBot, kLowC1, kLowC2, kl |
58 |
_RL resThk, resTheta, resSalt |
59 |
_RL deltaRho, deltaDpt, bbl_tend |
60 |
_RL bbl_rho1, bbl_rho2 |
61 |
_RL sloc ( 1-Olx:sNx+Olx, 1-Oly:sNy+Oly ) |
62 |
_RL tloc ( 1-Olx:sNx+Olx, 1-Oly:sNy+Oly ) |
63 |
_RL rholoc ( 1-Olx:sNx+Olx, 1-Oly:sNy+Oly ) |
64 |
_RL rhoBBL ( 1-Olx:sNx+Olx, 1-Oly:sNy+Oly ) |
65 |
_RL fZon ( 1-Olx:sNx+Olx, 1-Oly:sNy+Oly ) |
66 |
_RL fMer ( 1-Olx:sNx+Olx, 1-Oly:sNy+Oly ) |
67 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
68 |
CEOP |
69 |
|
70 |
C-- Loops on tile indices bi,bj |
71 |
DO bj=myByLo(myThid),myByHi(myThid) |
72 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
73 |
|
74 |
C Initialize tendency terms and make local copy of |
75 |
C bottomost temperature, salinity, and in-situ desnity |
76 |
C and of in-situ BBL density |
77 |
DO j=1-OLy,sNy+OLy |
78 |
DO i=1-OLx,sNx+OLx |
79 |
bbl_TendTheta(i,j,bi,bj) = 0. _d 0 |
80 |
bbl_TendSalt (i,j,bi,bj) = 0. _d 0 |
81 |
kBot = max(1,kLowC(i,j,bi,bj)) |
82 |
tLoc(i,j) = theta(i,j,kBot,bi,bj) |
83 |
sLoc(i,j) = salt (i,j,kBot,bi,bj) |
84 |
rholoc(i,j) = rhoInSitu(i,j,kBot,bi,bj) |
85 |
rhoBBL(i,j) = rhoInSitu(i,j,kBot+1, bi,bj) |
86 |
ENDDO |
87 |
ENDDO |
88 |
|
89 |
C==== Compute and apply vertical exchange between BBL and |
90 |
C residual volume of botommost wet grid box. |
91 |
C This operation does not change total tracer quantity |
92 |
C in botommost wet grid box. |
93 |
|
94 |
DO j=1-Oly,sNy+Oly |
95 |
DO i=1-Olx,sNx+Olx |
96 |
kBot = kLowC(i,j,bi,bj) |
97 |
IF ( kBot .GT. 0 ) THEN |
98 |
resThk = hFacC(i,j,kBot,bi,bj)*drF(kBot) - bbl_eta(i,j,bi,bj) |
99 |
|
100 |
C If bbl occupies the complete bottom model grid box or |
101 |
C if model density is higher than BBL then mix instantly. |
102 |
IF ( (resThk.LE.0) .OR. (rhoLoc(i,j).GE.rhoBBL(i,j)) ) THEN |
103 |
bbl_theta(i,j,bi,bj) = tLoc(i,j) |
104 |
bbl_salt (i,j,bi,bj) = sLoc(i,j) |
105 |
|
106 |
C If model density is lower than BBL, slowly diffuse upward. |
107 |
ELSE |
108 |
resTheta = ( tLoc(i,j) * (resThk+bbl_eta(i,j,bi,bj)) - |
109 |
& (bbl_theta(i,j,bi,bj)*bbl_eta(i,j,bi,bj)) ) / resThk |
110 |
resSalt = ( sLoc(i,j) * (resThk+bbl_eta(i,j,bi,bj)) - |
111 |
& (bbl_salt (i,j,bi,bj)*bbl_eta(i,j,bi,bj)) ) / resThk |
112 |
bbl_theta(i,j,bi,bj) = bbl_theta(i,j,bi,bj) + |
113 |
& deltaT * (resTheta-bbl_theta(i,j,bi,bj)) / bbl_RelaxR |
114 |
bbl_salt (i,j,bi,bj) = bbl_salt (i,j,bi,bj) + |
115 |
& deltaT * (resSalt -bbl_salt (i,j,bi,bj)) / bbl_RelaxR |
116 |
ENDIF |
117 |
ENDIF |
118 |
ENDDO |
119 |
ENDDO |
120 |
|
121 |
C==== Compute zonal bbl exchange. |
122 |
DO j=1-Oly,sNy+Oly |
123 |
DO i=1-Olx,sNx+Olx-1 |
124 |
kLowC1 = kLowC(i,j,bi,bj) |
125 |
kLowC2 = kLowC(i+1,j,bi,bj) |
126 |
IF ((kLowC1.GT.0).AND.(kLowC2.GT.0)) THEN |
127 |
C Compare the bbl densities at the higher pressure |
128 |
C (highest possible density of given t,s) |
129 |
C bbl in situ density is stored in kLowC + 1 index |
130 |
kl = MAX(kLowC1, kLowC2) + 1 |
131 |
bbl_rho1 = rhoInSitu(i,j,kl,bi,bj) |
132 |
bbl_rho2 = rhoInSitu(i+1,j,kl,bi,bj) |
133 |
deltaRho = bbl_rho2 - bbl_rho1 |
134 |
deltaDpt = R_low(i ,j,bi,bj) + bbl_eta(i ,j,bi,bj) - |
135 |
& R_low(i+1,j,bi,bj) - bbl_eta(i+1,j,bi,bj) |
136 |
|
137 |
C If heavy BBL water is higher than light BBL water, |
138 |
C exchange properties laterally. |
139 |
IF ( (deltaRho*deltaDpt) .LE. 0. ) THEN |
140 |
bbl_TendTheta(i,j,bi,bj) = bbl_TendTheta(i,j,bi,bj) + |
141 |
& ( bbl_theta(i+1,j,bi,bj) - bbl_theta(i,j,bi,bj) ) / |
142 |
& bbl_RelaxH |
143 |
bbl_TendTheta(i+1,j,bi,bj) = bbl_TendTheta(i+1,j,bi,bj) - |
144 |
& ( bbl_theta(i+1,j,bi,bj) - bbl_theta(i,j,bi,bj) ) * |
145 |
& ( rA(i ,j,bi,bj) * bbl_eta(i ,j,bi,bj) ) / |
146 |
& ( rA(i+1,j,bi,bj) * bbl_eta(i+1,j,bi,bj) * bbl_RelaxH ) |
147 |
bbl_TendSalt(i,j,bi,bj) = bbl_TendSalt(i,j,bi,bj) + |
148 |
& ( bbl_salt(i+1,j,bi,bj) - bbl_salt(i,j,bi,bj) ) / |
149 |
& bbl_RelaxH |
150 |
bbl_TendSalt(i+1,j,bi,bj) = bbl_TendSalt(i+1,j,bi,bj) - |
151 |
& ( bbl_salt(i+1,j,bi,bj) - bbl_salt(i,j,bi,bj) ) * |
152 |
& ( rA(i ,j,bi,bj) * bbl_eta(i ,j,bi,bj) ) / |
153 |
& ( rA(i+1,j,bi,bj) * bbl_eta(i+1,j,bi,bj) * bbl_RelaxH ) |
154 |
ENDIF |
155 |
ENDIF |
156 |
ENDDO |
157 |
ENDDO |
158 |
|
159 |
C==== Compute meridional bbl exchange. |
160 |
DO j=1-Oly,sNy+Oly-1 |
161 |
DO i=1-Olx,sNx+Olx |
162 |
kLowC1 = kLowC(i,j,bi,bj) |
163 |
kLowC2 = kLowC(i,j+1, bi,bj) |
164 |
IF ((kLowC1.GT.0).AND.(kLowC2.GT.0)) THEN |
165 |
C compare the bbl densities at the higher pressure |
166 |
C (highest possible density of given t,s) |
167 |
C bbl in situ density is stored in kLowC + 1 index |
168 |
kl = MAX(kLowC1, kLowC2) + 1 |
169 |
bbl_rho1 = rhoInSitu(i,j,kl,bi,bj) |
170 |
bbl_rho2 = rhoInSitu(i,j+1,kl,bi,bj) |
171 |
deltaRho = bbl_rho2 - bbl_rho1 |
172 |
deltaDpt = R_low(i,j ,bi,bj) + bbl_eta(i,j ,bi,bj) - |
173 |
& R_low(i,j+1,bi,bj) - bbl_eta(i,j+1,bi,bj) |
174 |
|
175 |
C If heavy BBL water is higher than light BBL water, |
176 |
C exchange properties laterally. |
177 |
IF ( (deltaRho*deltaDpt) .LE. 0. ) THEN |
178 |
bbl_TendTheta(i,j,bi,bj) = bbl_TendTheta(i,j,bi,bj) + |
179 |
& ( bbl_theta(i,j+1,bi,bj) - bbl_theta(i,j,bi,bj) ) / |
180 |
& bbl_RelaxH |
181 |
bbl_TendTheta(i,j+1,bi,bj) = bbl_TendTheta(i,j+1,bi,bj) - |
182 |
& ( bbl_theta(i,j+1,bi,bj) - bbl_theta(i,j,bi,bj) ) * |
183 |
& ( rA(i ,j,bi,bj) * bbl_eta(i ,j,bi,bj) ) / |
184 |
& ( rA(i,j+1,bi,bj) * bbl_eta(i,j+1,bi,bj) ) / |
185 |
& bbl_RelaxH |
186 |
bbl_TendSalt(i,j,bi,bj) = bbl_TendSalt(i,j,bi,bj) + |
187 |
& ( bbl_salt(i,j+1,bi,bj) - bbl_salt(i,j,bi,bj) ) / |
188 |
& bbl_RelaxH |
189 |
bbl_TendSalt(i,j+1,bi,bj) = bbl_TendSalt(i,j+1,bi,bj) - |
190 |
& ( bbl_salt(i,j+1,bi,bj)-bbl_salt(i,j,bi,bj)) * |
191 |
& ( rA(i ,j,bi,bj) * bbl_eta(i ,j,bi,bj) ) / |
192 |
& ( rA(i,j+1,bi,bj) * bbl_eta(i,j+1,bi,bj) * bbl_RelaxH ) |
193 |
ENDIF |
194 |
ENDIF |
195 |
ENDDO |
196 |
ENDDO |
197 |
|
198 |
C==== Apply lateral BBL exchange then scale tendency term |
199 |
C for botommost wet grid box. |
200 |
DO j=1-Oly,sNy+Oly-1 |
201 |
DO i=1-Olx,sNx+Olx-1 |
202 |
kBot = kLowC(i,j,bi,bj) |
203 |
IF ( kBot .GT. 0 ) THEN |
204 |
bbl_theta(i,j,bi,bj) = bbl_theta(i,j,bi,bj) + |
205 |
& deltaT * bbl_TendTheta(i,j,bi,bj) |
206 |
bbl_salt (i,j,bi,bj) = bbl_salt (i,j,bi,bj) + |
207 |
& deltaT * bbl_TendSalt (i,j,bi,bj) |
208 |
bbl_TendTheta(i,j,bi,bj) = bbl_TendTheta(i,j,bi,bj) * |
209 |
& bbl_eta(i,j,bi,bj) / (hFacC(i,j,kBot,bi,bj)*drF(kBot)) |
210 |
bbl_TendSalt (i,j,bi,bj) = bbl_TendSalt (i,j,bi,bj) * |
211 |
& bbl_eta(i,j,bi,bj) / (hFacC(i,j,kBot,bi,bj)*drF(kBot)) |
212 |
ENDIF |
213 |
ENDDO |
214 |
ENDDO |
215 |
|
216 |
#ifdef ALLOW_DEBUG |
217 |
IF ( debugLevel .GE. debLevB ) THEN |
218 |
C Check salinity conservation |
219 |
bbl_tend=0 |
220 |
DO j=1,sNy |
221 |
DO i=1,sNx |
222 |
kBot = kLowC(i,j,bi,bj) |
223 |
IF ( kBot .GT. 0 ) THEN |
224 |
bbl_tend = bbl_tend + bbl_TendSalt(i,j,bi,bj) * |
225 |
& hFacC(i,j,kBot,bi,bj) * drF(kBot) *rA(i,j,bi,bj) |
226 |
ENDIF |
227 |
ENDDO |
228 |
ENDDO |
229 |
_GLOBAL_SUM_RL( bbl_tend, myThid ) |
230 |
WRITE(msgBuf,'(A,E10.2)') 'total salt tendency = ', bbl_tend |
231 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
232 |
& SQUEEZE_RIGHT, myThid ) |
233 |
ENDIF |
234 |
#endif /* ALLOW_DEBUG */ |
235 |
|
236 |
CALL EXCH_XY_RL( bbl_theta, myThid ) |
237 |
CALL EXCH_XY_RL( bbl_salt , myThid ) |
238 |
|
239 |
C-- end bi,bj loops. |
240 |
ENDDO |
241 |
ENDDO |
242 |
|
243 |
RETURN |
244 |
END |