1 |
C $Header: /u/gcmpack/MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/seaice_growth.F,v 1.1 2012/12/21 10:00:29 atn Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
C !ROUTINE: SEAICE_GROWTH |
8 |
C !INTERFACE: |
9 |
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
10 |
C !DESCRIPTION: \bv |
11 |
C *==========================================================* |
12 |
C | SUBROUTINE seaice_growth |
13 |
C | o Updata ice thickness and snow depth |
14 |
C *==========================================================* |
15 |
C \ev |
16 |
|
17 |
C !USES: |
18 |
IMPLICIT NONE |
19 |
C === Global variables === |
20 |
#include "SIZE.h" |
21 |
#include "EEPARAMS.h" |
22 |
#include "PARAMS.h" |
23 |
#include "DYNVARS.h" |
24 |
#include "GRID.h" |
25 |
#include "FFIELDS.h" |
26 |
#include "SEAICE_PARAMS.h" |
27 |
#include "SEAICE.h" |
28 |
#ifdef ALLOW_EXF |
29 |
# include "EXF_OPTIONS.h" |
30 |
# include "EXF_FIELDS.h" |
31 |
# include "EXF_PARAM.h" |
32 |
#endif |
33 |
#ifdef ALLOW_SALT_PLUME |
34 |
# include "SALT_PLUME.h" |
35 |
#endif |
36 |
#ifdef ALLOW_AUTODIFF_TAMC |
37 |
# include "tamc.h" |
38 |
#endif |
39 |
|
40 |
C !INPUT/OUTPUT PARAMETERS: |
41 |
C === Routine arguments === |
42 |
C myTime :: Simulation time |
43 |
C myIter :: Simulation timestep number |
44 |
C myThid :: Thread no. that called this routine. |
45 |
_RL myTime |
46 |
INTEGER myIter, myThid |
47 |
|
48 |
C !FUNCTIONS: |
49 |
#ifdef ALLOW_DIAGNOSTICS |
50 |
LOGICAL DIAGNOSTICS_IS_ON |
51 |
EXTERNAL DIAGNOSTICS_IS_ON |
52 |
#endif |
53 |
|
54 |
C !LOCAL VARIABLES: |
55 |
C === Local variables === |
56 |
C |
57 |
C unit/sign convention: |
58 |
C Within the thermodynamic computation all stocks, except HSNOW, |
59 |
C are in 'effective ice meters' units, and >0 implies more ice. |
60 |
C This holds for stocks due to ocean and atmosphere heat, |
61 |
C at the outset of 'PART 2: determine heat fluxes/stocks' |
62 |
C and until 'PART 7: determine ocean model forcing' |
63 |
C This strategy minimizes the need for multiplications/divisions |
64 |
C by ice fraction, heat capacity, etc. The only conversions that |
65 |
C occurs are for the HSNOW (in effective snow meters) and |
66 |
C PRECIP (fresh water m/s). |
67 |
C |
68 |
C HEFF is effective Hice thickness (m3/m2) |
69 |
C HSNOW is Heffective snow thickness (m3/m2) |
70 |
C HSALT is Heffective salt content (g/m2) |
71 |
C AREA is the seaice cover fraction (0<=AREA<=1) |
72 |
C Q denotes heat stocks -- converted to ice stocks (m3/m2) early on |
73 |
C |
74 |
C For all other stocks/increments, such as d_HEFFbyATMonOCN |
75 |
C or a_QbyATM_cover, the naming convention is as follows: |
76 |
C The prefix 'a_' means available, the prefix 'd_' means delta |
77 |
C (i.e. increment), and the prefix 'r_' means residual. |
78 |
C The suffix '_cover' denotes a value for the ice covered fraction |
79 |
C of the grid cell, whereas '_open' is for the open water fraction. |
80 |
C The main part of the name states what ice/snow stock is concerned |
81 |
C (e.g. QbyATM or HEFF), and how it is affected (e.g. d_HEFFbyATMonOCN |
82 |
C is the increment of HEFF due to the ATMosphere extracting heat from the |
83 |
C OCeaN surface, or providing heat to the OCeaN surface). |
84 |
|
85 |
CEOP |
86 |
C i,j,bi,bj :: Loop counters |
87 |
INTEGER i, j, bi, bj |
88 |
C number of surface interface layer |
89 |
INTEGER kSurface |
90 |
C constants |
91 |
_RL TBC, ICE2SNOW |
92 |
_RL QI, QS |
93 |
|
94 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
95 |
C the atmosphere and the ocean surface - for ice covered water |
96 |
C a_QbyATM_open :: same but for open water |
97 |
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
98 |
C r_QbyATM_open :: same but for open water |
99 |
_RL a_QbyATM_cover (1:sNx,1:sNy) |
100 |
_RL a_QbyATM_open (1:sNx,1:sNy) |
101 |
_RL r_QbyATM_cover (1:sNx,1:sNy) |
102 |
_RL r_QbyATM_open (1:sNx,1:sNy) |
103 |
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
104 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
105 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
106 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
107 |
C a_QbyOCN :: available heat (in in W/m^2) due to the |
108 |
C interaction of the ice pack and the ocean surface |
109 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
110 |
C processes have been accounted for |
111 |
_RL a_QbyOCN (1:sNx,1:sNy) |
112 |
_RL r_QbyOCN (1:sNx,1:sNy) |
113 |
|
114 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
115 |
_RL convertQ2HI, convertHI2Q |
116 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
117 |
_RL convertPRECIP2HI, convertHI2PRECIP |
118 |
|
119 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
120 |
_RL d_AREAbyATM (1:sNx,1:sNy) |
121 |
#ifdef FENTY_AREA_EXPANSION_CONTRACTION |
122 |
_RL d_AREAbyOCN (1:sNx,1:sNy) |
123 |
_RL d_AREAbyICE (1:sNx,1:sNy) |
124 |
#endif |
125 |
|
126 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
127 |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
128 |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
129 |
_RL d_HEFFbyATMonICE (1:sNx,1:sNy) |
130 |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
131 |
|
132 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
133 |
|
134 |
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
135 |
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
136 |
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
137 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
138 |
|
139 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
140 |
C |
141 |
C a_FWbySublim :: fresh water flux implied by latent heat of |
142 |
C sublimation to atmosphere, same sign convention |
143 |
C as EVAP (positive upward) |
144 |
_RL a_FWbySublim (1:sNx,1:sNy) |
145 |
#ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
146 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
147 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
148 |
_RL rodt, rrodt |
149 |
#endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
150 |
|
151 |
C actual ice thickness with upper and lower limit |
152 |
_RL heffActual (1:sNx,1:sNy) |
153 |
C actual snow thickness |
154 |
_RL hsnowActual (1:sNx,1:sNy) |
155 |
|
156 |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
157 |
_RL AREApreTH (1:sNx,1:sNy) |
158 |
_RL HEFFpreTH (1:sNx,1:sNy) |
159 |
_RL HSNWpreTH (1:sNx,1:sNy) |
160 |
|
161 |
C wind speed |
162 |
_RL UG (1:sNx,1:sNy) |
163 |
#ifdef ALLOW_ATM_WIND |
164 |
_RL SPEED_SQ |
165 |
#endif |
166 |
|
167 |
C pathological cases thresholds |
168 |
_RL heffTooThin, heffTooHeavy |
169 |
|
170 |
C temporary variables available for the various computations |
171 |
#ifdef SEAICE_GROWTH_LEGACY |
172 |
_RL tmpscal0 |
173 |
#endif |
174 |
_RL tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
175 |
_RL tmparr1 (1:sNx,1:sNy) |
176 |
|
177 |
#ifdef ALLOW_SEAICE_FLOODING |
178 |
_RL hDraft |
179 |
#endif /* ALLOW_SEAICE_FLOODING */ |
180 |
|
181 |
#ifdef SEAICE_SALINITY |
182 |
_RL saltFluxAdjust (1:sNx,1:sNy) |
183 |
#endif |
184 |
|
185 |
INTEGER nDim |
186 |
#ifdef SEAICE_MULTICATEGORY |
187 |
INTEGER ilockey |
188 |
PARAMETER ( nDim = MULTDIM ) |
189 |
INTEGER it |
190 |
_RL pFac |
191 |
_RL heffActualP (1:sNx,1:sNy) |
192 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy) |
193 |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy) |
194 |
_RL a_FWbySublimMult (1:sNx,1:sNy) |
195 |
#else |
196 |
PARAMETER ( nDim = 1 ) |
197 |
#endif /* SEAICE_MULTICATEGORY */ |
198 |
|
199 |
#ifdef FENTY_AREA_EXPANSION_CONTRACTION |
200 |
_RL heff_star |
201 |
#endif |
202 |
|
203 |
#ifdef MCPHEE_OCEAN_ICE_HEAT_FLUX |
204 |
C Factor by which we increase the upper ocean friction velocity (u*) when |
205 |
C ice is absent in a grid cell (dimensionless) |
206 |
_RL MixedLayerTurbulenceFactor |
207 |
|
208 |
c The Stanton number for the McPhee |
209 |
c ocean-ice heat flux parameterization (dimensionless) |
210 |
_RL STANTON_NUMBER |
211 |
|
212 |
c A typical friction velocity beneath sea ice for the |
213 |
c McPhee heat flux parameterization (m/s) |
214 |
_RL USTAR_BASE |
215 |
|
216 |
_RL surf_theta |
217 |
_RL F_oi (1:sNx,1:sNy) |
218 |
#endif |
219 |
|
220 |
#ifdef ALLOW_DIAGNOSTICS |
221 |
_RL DIAGarray (1:sNx,1:sNy) |
222 |
_RL DIAGarrayA (1:sNx,1:sNy) |
223 |
_RL DIAGarrayB (1:sNx,1:sNy) |
224 |
_RL DIAGarrayC (1:sNx,1:sNy) |
225 |
_RL DIAGarrayD (1:sNx,1:sNy) |
226 |
#endif |
227 |
|
228 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
229 |
|
230 |
C =================================================================== |
231 |
C =================PART 0: constants and initializations============= |
232 |
C =================================================================== |
233 |
|
234 |
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
235 |
kSurface = Nr |
236 |
ELSE |
237 |
kSurface = 1 |
238 |
ENDIF |
239 |
|
240 |
C Cutoff for very thin ice |
241 |
heffTooThin=1. _d -5 |
242 |
C Cutoff for iceload |
243 |
heffTooHeavy=dRf(kSurface) / 5. _d 0 |
244 |
|
245 |
C FREEZING TEMP. OF SEA WATER (deg C) |
246 |
TBC = SEAICE_freeze |
247 |
|
248 |
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
249 |
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
250 |
|
251 |
C HEAT OF FUSION OF ICE (J/m^3) |
252 |
QI = SEAICE_rhoIce*SEAICE_lhFusion |
253 |
C HEAT OF FUSION OF SNOW (J/m^3) |
254 |
QS = SEAICE_rhoSnow*SEAICE_lhFusion |
255 |
C |
256 |
C note that QI/QS=ICE2SNOW -- except it wasnt in old code |
257 |
|
258 |
#ifdef MCPHEE_OCEAN_ICE_HEAT_FLUX |
259 |
STANTON_NUMBER = 0.0056 _d 0 |
260 |
USTAR_BASE = 0.0125 _d 0 |
261 |
#endif |
262 |
|
263 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
264 |
convertQ2HI=SEAICE_deltaTtherm/QI |
265 |
convertHI2Q=1/convertQ2HI |
266 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
267 |
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
268 |
convertHI2PRECIP=1./convertPRECIP2HI |
269 |
|
270 |
DO bj=myByLo(myThid),myByHi(myThid) |
271 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
272 |
|
273 |
#ifdef ALLOW_AUTODIFF_TAMC |
274 |
act1 = bi - myBxLo(myThid) |
275 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
276 |
act2 = bj - myByLo(myThid) |
277 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
278 |
act3 = myThid - 1 |
279 |
max3 = nTx*nTy |
280 |
act4 = ikey_dynamics - 1 |
281 |
iicekey = (act1 + 1) + act2*max1 |
282 |
& + act3*max1*max2 |
283 |
& + act4*max1*max2*max3 |
284 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
285 |
|
286 |
|
287 |
C array initializations |
288 |
C ===================== |
289 |
|
290 |
DO J=1,sNy |
291 |
DO I=1,sNx |
292 |
a_QbyATM_cover (I,J) = 0.0 _d 0 |
293 |
a_QbyATM_open(I,J) = 0.0 _d 0 |
294 |
r_QbyATM_cover (I,J) = 0.0 _d 0 |
295 |
r_QbyATM_open (I,J) = 0.0 _d 0 |
296 |
|
297 |
a_QSWbyATM_open (I,J) = 0.0 _d 0 |
298 |
a_QSWbyATM_cover (I,J) = 0.0 _d 0 |
299 |
|
300 |
a_QbyOCN (I,J) = 0.0 _d 0 |
301 |
r_QbyOCN (I,J) = 0.0 _d 0 |
302 |
|
303 |
d_AREAbyATM(I,J) = 0.0 _d 0 |
304 |
#ifdef FENTY_AREA_EXPANSION_CONTRACTION |
305 |
d_AREAbyICE(I,J) = 0.0 _d 0 |
306 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
307 |
#endif |
308 |
|
309 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
310 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
311 |
d_HEFFbyATMonICE(I,J) = 0.0 _d 0 |
312 |
d_HEFFbyFLOODING(I,J) = 0.0 _d 0 |
313 |
|
314 |
d_HEFFbyATMonOCN_open(I,J) = 0.0 _d 0 |
315 |
|
316 |
d_HSNWbyATMonSNW(I,J) = 0.0 _d 0 |
317 |
d_HSNWbyOCNonSNW(I,J) = 0.0 _d 0 |
318 |
d_HSNWbyRAIN(I,J) = 0.0 _d 0 |
319 |
a_FWbySublim(I,J) = 0.0 _d 0 |
320 |
#ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
321 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
322 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
323 |
#endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
324 |
c |
325 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
326 |
|
327 |
tmparr1(I,J) = 0.0 _d 0 |
328 |
|
329 |
#ifdef SEAICE_SALINITY |
330 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
331 |
#endif |
332 |
#ifdef SEAICE_MULTICATEGORY |
333 |
a_QbyATMmult_cover(I,J) = 0.0 _d 0 |
334 |
a_QSWbyATMmult_cover(I,J) = 0.0 _d 0 |
335 |
a_FWbySublimMult(I,J) = 0.0 _d 0 |
336 |
#endif /* SEAICE_MULTICATEGORY */ |
337 |
ENDDO |
338 |
ENDDO |
339 |
#ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
340 |
DO J=1-oLy,sNy+oLy |
341 |
DO I=1-oLx,sNx+oLx |
342 |
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
343 |
ENDDO |
344 |
ENDDO |
345 |
#endif |
346 |
|
347 |
|
348 |
C ===================================================================== |
349 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
350 |
C ===================================================================== |
351 |
|
352 |
#ifdef SEAICE_GROWTH_LEGACY |
353 |
|
354 |
DO J=1,sNy |
355 |
DO I=1,sNx |
356 |
HEFFpreTH(I,J)=HEFFNM1(I,J,bi,bj) |
357 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
358 |
AREApreTH(I,J)=AREANM1(I,J,bi,bj) |
359 |
d_HEFFbyNEG(I,J)=0. _d 0 |
360 |
d_HSNWbyNEG(I,J)=0. _d 0 |
361 |
ENDDO |
362 |
ENDDO |
363 |
|
364 |
#else /* SEAICE_GROWTH_LEGACY */ |
365 |
|
366 |
#ifdef ALLOW_AUTODIFF_TAMC |
367 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
368 |
Cgf no dependency through pathological cases treatment |
369 |
if ( SEAICEadjMODE.EQ.0 ) then |
370 |
#endif |
371 |
#endif |
372 |
|
373 |
C 1) treat the case of negative values: |
374 |
|
375 |
#ifdef ALLOW_AUTODIFF_TAMC |
376 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
377 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
378 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
379 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
380 |
DO J=1,sNy |
381 |
DO I=1,sNx |
382 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
383 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
384 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
385 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
386 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
387 |
ENDDO |
388 |
ENDDO |
389 |
|
390 |
C 1.25) treat the case of very thin ice: |
391 |
|
392 |
#ifdef ALLOW_AUTODIFF_TAMC |
393 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
394 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
395 |
DO J=1,sNy |
396 |
DO I=1,sNx |
397 |
if (HEFF(I,J,bi,bj).LE.heffTooThin) then |
398 |
tmpscal2=-HEFF(I,J,bi,bj) |
399 |
tmpscal3=-HSNOW(I,J,bi,bj) |
400 |
TICE(I,J,bi,bj)=celsius2K |
401 |
else |
402 |
tmpscal2=0. _d 0 |
403 |
tmpscal3=0. _d 0 |
404 |
endif |
405 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
406 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
407 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
408 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
409 |
ENDDO |
410 |
ENDDO |
411 |
|
412 |
C 1.5) treat the case of area but no ice/snow: |
413 |
|
414 |
#ifdef ALLOW_AUTODIFF_TAMC |
415 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
416 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
417 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
418 |
DO J=1,sNy |
419 |
DO I=1,sNx |
420 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
421 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
422 |
ENDDO |
423 |
ENDDO |
424 |
|
425 |
C 2) treat the case of very small area: |
426 |
|
427 |
#ifdef ALLOW_AUTODIFF_TAMC |
428 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
429 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
430 |
DO J=1,sNy |
431 |
DO I=1,sNx |
432 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) |
433 |
& AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),areaMin) |
434 |
ENDDO |
435 |
ENDDO |
436 |
|
437 |
C 2.5) treat case of excessive ice cover: |
438 |
|
439 |
#ifdef ALLOW_AUTODIFF_TAMC |
440 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
441 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
442 |
DO J=1,sNy |
443 |
DO I=1,sNx |
444 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),areaMax) |
445 |
ENDDO |
446 |
ENDDO |
447 |
|
448 |
#ifdef ALLOW_AUTODIFF_TAMC |
449 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
450 |
endif |
451 |
#endif |
452 |
#endif |
453 |
|
454 |
C 3) store regularized values of heff, hsnow, area at the onset of thermo. |
455 |
DO J=1,sNy |
456 |
DO I=1,sNx |
457 |
HEFFpreTH(I,J)=HEFF(I,J,bi,bj) |
458 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
459 |
AREApreTH(I,J)=AREA(I,J,bi,bj) |
460 |
ENDDO |
461 |
ENDDO |
462 |
|
463 |
|
464 |
|
465 |
C 4) treat sea ice salinity pathological cases |
466 |
#ifdef SEAICE_SALINITY |
467 |
#ifdef ALLOW_AUTODIFF_TAMC |
468 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
469 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
470 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
471 |
DO J=1,sNy |
472 |
DO I=1,sNx |
473 |
IF ( (HSALT(I,J,bi,bj) .LT. 0.0).OR. |
474 |
& (HEFF(I,J,bi,bj) .EQ. 0.0) ) THEN |
475 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
476 |
& HSALT(I,J,bi,bj) / SEAICE_deltaTtherm |
477 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
478 |
ENDIF |
479 |
ENDDO |
480 |
ENDDO |
481 |
#endif /* SEAICE_SALINITY */ |
482 |
|
483 |
C 5) treat sea ice age pathological cases |
484 |
C ... |
485 |
#endif /* SEAICE_GROWTH_LEGACY */ |
486 |
|
487 |
#ifdef ALLOW_AUTODIFF_TAMC |
488 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
489 |
Cgf no additional dependency of air-sea fluxes to ice |
490 |
if ( SEAICEadjMODE.GE.1 ) then |
491 |
DO J=1,sNy |
492 |
DO I=1,sNx |
493 |
HEFFpreTH(I,J) = 0. _d 0 |
494 |
HSNWpreTH(I,J) = 0. _d 0 |
495 |
AREApreTH(I,J) = 0. _d 0 |
496 |
ENDDO |
497 |
ENDDO |
498 |
endif |
499 |
#endif |
500 |
#endif |
501 |
|
502 |
C 4) COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
503 |
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
504 |
|
505 |
#ifdef ALLOW_AUTODIFF_TAMC |
506 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
507 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
508 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
509 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
510 |
DO J=1,sNy |
511 |
DO I=1,sNx |
512 |
tmpscal1 = MAX(areaMin,AREApreTH(I,J)) |
513 |
hsnowActual(I,J) = HSNWpreTH(I,J)/tmpscal1 |
514 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
515 |
heffActual(I,J) = MAX(tmpscal2,hiceMin) |
516 |
Cgf do we need to keep this comment? |
517 |
C Capping the actual ice thickness effectively enforces a |
518 |
C minimum of heat flux through the ice and helps getting rid of |
519 |
C very thick ice. |
520 |
Cdm actually, this does exactly the opposite, i.e., ice is thicker |
521 |
Cdm when heffActual is capped, so I am commenting out |
522 |
Cdm heffActual(I,J) = MIN(heffActual(I,J),9.0 _d +00) |
523 |
ENDDO |
524 |
ENDDO |
525 |
|
526 |
#ifdef ALLOW_AUTODIFF_TAMC |
527 |
#ifdef SEAICE_SIMPLIFY_GROWTH_ADJ |
528 |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
529 |
CALL ZERO_ADJ_1D( sNx*sNy, hsnowActual, myThid) |
530 |
#endif |
531 |
#endif |
532 |
|
533 |
|
534 |
C =================================================================== |
535 |
C ================PART 2: determine heat fluxes/stocks=============== |
536 |
C =================================================================== |
537 |
|
538 |
C determine available heat due to the atmosphere -- for open water |
539 |
C ================================================================ |
540 |
|
541 |
C ocean surface/mixed layer temperature |
542 |
DO J=1,sNy |
543 |
DO I=1,sNx |
544 |
TMIX(I,J,bi,bj)=theta(I,J,kSurface,bi,bj)+celsius2K |
545 |
ENDDO |
546 |
ENDDO |
547 |
|
548 |
C wind speed from exf |
549 |
DO J=1,sNy |
550 |
DO I=1,sNx |
551 |
UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj)) |
552 |
ENDDO |
553 |
ENDDO |
554 |
|
555 |
#ifdef ALLOW_AUTODIFF_TAMC |
556 |
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
557 |
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
558 |
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
559 |
cCADJ STORE TMIX(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
560 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
561 |
|
562 |
CALL SEAICE_BUDGET_OCEAN( |
563 |
I UG, |
564 |
U TMIX, |
565 |
O a_QbyATM_open, a_QSWbyATM_open, |
566 |
I bi, bj, myTime, myIter, myThid ) |
567 |
|
568 |
C determine available heat due to the atmosphere -- for ice covered water |
569 |
C ======================================================================= |
570 |
|
571 |
#ifdef ALLOW_ATM_WIND |
572 |
IF (useRelativeWind) THEN |
573 |
C Compute relative wind speed over sea ice. |
574 |
DO J=1,sNy |
575 |
DO I=1,sNx |
576 |
SPEED_SQ = |
577 |
& (uWind(I,J,bi,bj) |
578 |
& +0.5 _d 0*(uVel(i,j,kSurface,bi,bj) |
579 |
& +uVel(i+1,j,kSurface,bi,bj)) |
580 |
& -0.5 _d 0*(uice(i,j,bi,bj)+uice(i+1,j,bi,bj)))**2 |
581 |
& +(vWind(I,J,bi,bj) |
582 |
& +0.5 _d 0*(vVel(i,j,kSurface,bi,bj) |
583 |
& +vVel(i,j+1,kSurface,bi,bj)) |
584 |
& -0.5 _d 0*(vice(i,j,bi,bj)+vice(i,j+1,bi,bj)))**2 |
585 |
IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN |
586 |
UG(I,J)=SEAICE_EPS |
587 |
ELSE |
588 |
UG(I,J)=SQRT(SPEED_SQ) |
589 |
ENDIF |
590 |
ENDDO |
591 |
ENDDO |
592 |
ENDIF |
593 |
#endif |
594 |
|
595 |
#ifdef ALLOW_AUTODIFF_TAMC |
596 |
CADJ STORE tice = comlev1, key = ikey_dynamics, byte = isbyte |
597 |
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
598 |
CADJ STORE heffActual = comlev1_bibj, key = iicekey, byte = isbyte |
599 |
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
600 |
# ifdef SEAICE_MULTICATEGORY |
601 |
CADJ STORE tices = comlev1, key = ikey_dynamics, byte = isbyte |
602 |
# endif /* SEAICE_MULTICATEGORY */ |
603 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
604 |
|
605 |
C-- Start loop over multi-categories, if SEAICE_MULTICATEGORY is undefined |
606 |
C nDim = 1, and there is only one loop iteration |
607 |
#ifdef SEAICE_MULTICATEGORY |
608 |
DO IT=1,nDim |
609 |
#ifdef ALLOW_AUTODIFF_TAMC |
610 |
C Why do we need this store directive when we have just stored |
611 |
C TICES before the loop? |
612 |
ilockey = (iicekey-1)*nDim + IT |
613 |
CADJ STORE tices(:,:,it,bi,bj) = comlev1_multdim, |
614 |
CADJ & key = ilockey, byte = isbyte |
615 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
616 |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)/nDim |
617 |
DO J=1,sNy |
618 |
DO I=1,sNx |
619 |
heffActualP(I,J)= heffActual(I,J)*pFac |
620 |
TICE(I,J,bi,bj)=TICES(I,J,IT,bi,bj) |
621 |
ENDDO |
622 |
ENDDO |
623 |
CALL SEAICE_SOLVE4TEMP( |
624 |
I UG, heffActualP, hsnowActual, |
625 |
U TICE, |
626 |
O a_QbyATMmult_cover, a_QSWbyATMmult_cover, |
627 |
O a_FWbySublimMult, |
628 |
I bi, bj, myTime, myIter, myThid ) |
629 |
DO J=1,sNy |
630 |
DO I=1,sNx |
631 |
C average over categories |
632 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
633 |
& + a_QbyATMmult_cover(I,J)/nDim |
634 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
635 |
& + a_QSWbyATMmult_cover(I,J)/nDim |
636 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
637 |
& + a_FWbySublimMult(I,J)/nDim |
638 |
TICES(I,J,IT,bi,bj) = TICE(I,J,bi,bj) |
639 |
ENDDO |
640 |
ENDDO |
641 |
ENDDO |
642 |
#else |
643 |
CALL SEAICE_SOLVE4TEMP( |
644 |
I UG, heffActual, hsnowActual, |
645 |
U TICE, |
646 |
O a_QbyATM_cover, a_QSWbyATM_cover, a_FWbySublim, |
647 |
I bi, bj, myTime, myIter, myThid ) |
648 |
#endif /* SEAICE_MULTICATEGORY */ |
649 |
C-- End loop over multi-categories |
650 |
|
651 |
#ifdef ALLOW_DIAGNOSTICS |
652 |
IF ( useDiagnostics ) THEN |
653 |
IF ( DIAGNOSTICS_IS_ON('SIatmQnt',myThid) ) THEN |
654 |
DO J=1,sNy |
655 |
DO I=1,sNx |
656 |
CML If I consider the atmosphere above the ice, the surface flux |
657 |
CML which is relevant for the air temperature dT/dt Eq |
658 |
CML accounts for sensible and radiation (with different treatment |
659 |
CML according to wave-length) fluxes but not for "latent heat flux", |
660 |
CML since it does not contribute to heating the air. |
661 |
CML So this diagnostic is only good for heat budget calculations within |
662 |
CML the ice-ocean system. |
663 |
DIAGarray(I,J) = maskC(I,J,kSurface,bi,bj) * ( |
664 |
& a_QbyATM_cover(I,J) * AREApreTH(I,J) |
665 |
& + a_QbyATM_open(I,J) * ( ONE - AREApreTH(I,J) ) ) |
666 |
ENDDO |
667 |
ENDDO |
668 |
CALL DIAGNOSTICS_FILL(DIAGarray,'SIatmQnt',0,1,3,bi,bj,myThid) |
669 |
ENDIF |
670 |
IF ( DIAGNOSTICS_IS_ON('SIfwSubl',myThid) ) THEN |
671 |
DO J=1,sNy |
672 |
DO I=1,sNx |
673 |
DIAGarray(I,J) = maskC(I,J,kSurface,bi,bj) * |
674 |
& a_FWbySublim(I,J) * AREApreTH(I,J) |
675 |
ENDDO |
676 |
ENDDO |
677 |
CALL DIAGNOSTICS_FILL(DIAGarray,'SIfwSubl',0,1,3,bi,bj,myThid) |
678 |
ENDIF |
679 |
IF ( DIAGNOSTICS_IS_ON('SIatmFW ',myThid) ) THEN |
680 |
DO J=1,sNy |
681 |
DO I=1,sNx |
682 |
DIAGarray(I,J) = maskC(I,J,kSurface,bi,bj)*( |
683 |
& PRECIP(I,J,bi,bj) |
684 |
& - EVAP(I,J,bi,bj) |
685 |
& *( ONE - AREApreTH(I,J) ) |
686 |
#ifdef ALLOW_RUNOFF |
687 |
& + RUNOFF(I,J,bi,bj) |
688 |
#endif /* ALLOW_RUNOFF */ |
689 |
& )*rhoConstFresh |
690 |
#ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
691 |
& - a_FWbySublim(I,J)*AREApreTH(I,J) |
692 |
#endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
693 |
ENDDO |
694 |
ENDDO |
695 |
CALL DIAGNOSTICS_FILL(DIAGarray,'SIatmFW ',0,1,3,bi,bj,myThid) |
696 |
ENDIF |
697 |
ENDIF |
698 |
#endif /* ALLOW_DIAGNOSTICS */ |
699 |
|
700 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
701 |
DO J=1,sNy |
702 |
DO I=1,sNx |
703 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
704 |
& * convertQ2HI * AREApreTH(I,J) |
705 |
a_QSWbyATM_cover(I,J) = a_QSWbyATM_cover(I,J) |
706 |
& * convertQ2HI * AREApreTH(I,J) |
707 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
708 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
709 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
710 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
711 |
C and initialize r_QbyATM_cover/r_QbyATM_open |
712 |
r_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
713 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
714 |
|
715 |
#ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
716 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
717 |
C Negative sublimation is resublimation and will be added as snow. |
718 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm/SEAICE_rhoIce |
719 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
720 |
#endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
721 |
ENDDO |
722 |
ENDDO |
723 |
|
724 |
#ifdef ALLOW_AUTODIFF_TAMC |
725 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
726 |
Cgf no additional dependency through ice cover |
727 |
if ( SEAICEadjMODE.GE.3 ) then |
728 |
DO J=1,sNy |
729 |
DO I=1,sNx |
730 |
a_QbyATM_cover(I,J) = 0. _d 0 |
731 |
r_QbyATM_cover(I,J) = 0. _d 0 |
732 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
733 |
ENDDO |
734 |
ENDDO |
735 |
endif |
736 |
#endif |
737 |
#endif |
738 |
|
739 |
C determine available heat due to the ice pack tying the |
740 |
C underlying surface water temperature to freezing point |
741 |
C ====================================================== |
742 |
|
743 |
#ifdef ALLOW_AUTODIFF_TAMC |
744 |
CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
745 |
#endif |
746 |
|
747 |
|
748 |
DO J=1,sNy |
749 |
DO I=1,sNx |
750 |
|
751 |
#ifdef SEAICE_VARIABLE_FREEZING_POINT |
752 |
TBC = -0.0575 _d 0*salt(I,J,kSurface,bi,bj) + 0.0901 _d 0 |
753 |
#endif /* SEAICE_VARIABLE_FREEZING_POINT */ |
754 |
|
755 |
#ifdef MCPHEE_OCEAN_ICE_HEAT_FLUX |
756 |
DIAGarrayA (I,J) = ZERO |
757 |
|
758 |
c Bound the ocean temperature to be at or above the freezing point. |
759 |
surf_theta = max(theta(I,J,kSurface,bi,bj), TBC) |
760 |
#ifdef GRADIENT_MIXED_LAYER_TURBULENCE_FACTOR |
761 |
MixedLayerTurbulenceFactor = 12.5 _d 0 - |
762 |
& 11.5 *AREApreTH(I,J) |
763 |
#else |
764 |
c If ice is present, MixedLayerTurbulenceFactor = 1.0, else 12.50 |
765 |
IF (AREApreTH(I,J) .GT. 0. _d 0) THEN |
766 |
MixedLayerTurbulenceFactor = ONE |
767 |
ELSE |
768 |
MixedLayerTurbulenceFactor = 12.5 _d 0 |
769 |
ENDIF |
770 |
#endif /* GRADIENT_MIXED_LAYER_TURBULENCE_FACTOR */ |
771 |
|
772 |
c The flux |
773 |
F_oi(I,J) = -STANTON_NUMBER * USTAR_BASE * rhoConst * |
774 |
& HeatCapacity_Cp *(surf_theta - TBC)* |
775 |
& MixedLayerTurbulenceFactor*hFacC(i,j,kSurface,bi,bj) |
776 |
|
777 |
a_QbyOCN(I,J) = F_oi(I,J) * convertQ2HI |
778 |
|
779 |
#else |
780 |
|
781 |
IF ( .NOT. inAdMode ) THEN |
782 |
IF ( theta(I,J,kSurface,bi,bj) .GE. TBC ) THEN |
783 |
a_QbyOCN(i,j) = -SEAICE_availHeatFrac |
784 |
& * (theta(I,J,kSurface,bi,bj)-TBC) * dRf(kSurface) |
785 |
& * hFacC(i,j,kSurface,bi,bj) * |
786 |
& (HeatCapacity_Cp*rhoConst/QI) |
787 |
ELSE |
788 |
a_QbyOCN(i,j) = -SEAICE_availHeatFracFrz |
789 |
& * (theta(I,J,kSurface,bi,bj)-TBC) * dRf(kSurface) |
790 |
& * hFacC(i,j,kSurface,bi,bj) * |
791 |
& (HeatCapacity_Cp*rhoConst/QI) |
792 |
ENDIF |
793 |
ELSE |
794 |
a_QbyOCN(i,j) = 0. |
795 |
ENDIF |
796 |
|
797 |
#endif /* MCPHEE_OCEAN_ICE_HEAT_FLUX */ |
798 |
|
799 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
800 |
|
801 |
ENDDO |
802 |
ENDDO |
803 |
|
804 |
#ifdef MCPHEE_OCEAN_ICE_HEAT_FLUX |
805 |
#ifdef ALLOW_DIAGNOSTICS |
806 |
IF ( useDiagnostics ) THEN |
807 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM10',myThid) ) THEN |
808 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
809 |
& 'SIDDUM10',0,1,3,bi,bj,myThid) |
810 |
ENDIF |
811 |
ENDIF |
812 |
#endif |
813 |
#endif |
814 |
|
815 |
|
816 |
|
817 |
#ifdef ALLOW_AUTODIFF_TAMC |
818 |
#ifdef SEAICE_SIMPLIFY_GROWTH_ADJ |
819 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
820 |
#endif |
821 |
#endif |
822 |
|
823 |
|
824 |
C =================================================================== |
825 |
C =========PART 3: determine effective thicknesses increments======== |
826 |
C =================================================================== |
827 |
|
828 |
C compute ice thickness tendency due to ice-ocean interaction |
829 |
C =========================================================== |
830 |
|
831 |
#ifdef ALLOW_AUTODIFF_TAMC |
832 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
833 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
834 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
835 |
|
836 |
DO J=1,sNy |
837 |
DO I=1,sNx |
838 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
839 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
840 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
841 |
#ifdef ALLOW_DIAGNOSTICS |
842 |
DIAGarrayA(I,J) = d_HEFFbyOCNonICE(i,j) |
843 |
#endif |
844 |
ENDDO |
845 |
ENDDO |
846 |
|
847 |
#ifdef ALLOW_DIAGNOSTICS |
848 |
IF ( useDiagnostics ) THEN |
849 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM01',myThid) ) THEN |
850 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
851 |
& 'SIDDUM01',0,1,3,bi,bj,myThid) |
852 |
ENDIF |
853 |
ENDIF |
854 |
#endif |
855 |
|
856 |
#ifdef SEAICE_GROWTH_LEGACY |
857 |
#ifdef ALLOW_DIAGNOSTICS |
858 |
IF ( useDiagnostics ) THEN |
859 |
IF ( DIAGNOSTICS_IS_ON('SIyneg ',myThid) ) THEN |
860 |
CALL DIAGNOSTICS_FILL(d_HEFFbyOCNonICE, |
861 |
& 'SIyneg ',0,1,1,bi,bj,myThid) |
862 |
ENDIF |
863 |
ENDIF |
864 |
#endif |
865 |
#endif |
866 |
|
867 |
C compute snow melt tendency due to snow-atmosphere interaction |
868 |
C ================================================================== |
869 |
|
870 |
#ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
871 |
#ifdef ALLOW_AUTODIFF_TAMC |
872 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
873 |
CADJ STORE a_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
874 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
875 |
C First apply sublimation to snow |
876 |
rodt = ICE2SNOW |
877 |
rrodt = 1./rodt |
878 |
DO J=1,sNy |
879 |
DO I=1,sNx |
880 |
IF ( a_FWbySublim(I,J) .LT. 0. _d 0 ) THEN |
881 |
C resublimate as snow |
882 |
d_HSNWbySublim(I,J) = -a_FWbySublim(I,J)*rodt |
883 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbySublim(I,J) |
884 |
a_FWbySublim(I,J) = 0. _d 0 |
885 |
ENDIF |
886 |
C sublimate snow first |
887 |
tmpscal1 = MIN(a_FWbySublim(I,J)*rodt,HSNOW(I,J,bi,bj)) |
888 |
tmpscal2 = MAX(tmpscal1,0. _d 0) |
889 |
d_HSNWbySublim(I,J) = - tmpscal2 |
890 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2 |
891 |
a_FWbySublim(I,J) = a_FWbySublim(I,J) - tmpscal2*rrodt |
892 |
ENDDO |
893 |
ENDDO |
894 |
#endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
895 |
|
896 |
#ifdef ALLOW_AUTODIFF_TAMC |
897 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
898 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
899 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
900 |
|
901 |
DO J=1,sNy |
902 |
DO I=1,sNx |
903 |
tmpscal1=MAX(r_QbyATM_cover(I,J)*ICE2SNOW,-HSNOW(I,J,bi,bj)) |
904 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
905 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
906 |
Cgf no additional dependency through snow |
907 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
908 |
#endif |
909 |
d_HSNWbyATMonSNW(I,J)= tmpscal2 |
910 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2 |
911 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2/ICE2SNOW |
912 |
ENDDO |
913 |
ENDDO |
914 |
|
915 |
C compute ice thickness tendency due to the atmosphere |
916 |
C ==================================================== |
917 |
|
918 |
#ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
919 |
#ifdef ALLOW_AUTODIFF_TAMC |
920 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
921 |
CADJ STORE a_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
922 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
923 |
C Apply sublimation to ice |
924 |
rodt = 1. _d 0 |
925 |
rrodt = 1./rodt |
926 |
DO J=1,sNy |
927 |
DO I=1,sNx |
928 |
C If anything is left, sublimate ice |
929 |
tmpscal1 = MIN(a_FWbySublim(I,J)*rodt,HEFF(I,J,bi,bj)) |
930 |
tmpscal2 = MAX(tmpscal1,0. _d 0) |
931 |
d_HEFFbySublim(I,J) = - tmpscal2 |
932 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
933 |
a_FWbySublim(I,J) = a_FWbySublim(I,J) - tmpscal2*rrodt |
934 |
ENDDO |
935 |
ENDDO |
936 |
#endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
937 |
|
938 |
#ifdef ALLOW_AUTODIFF_TAMC |
939 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
940 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
941 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
942 |
|
943 |
Cgf note: this block is not actually tested by lab_sea |
944 |
Cgf where all experiments start in January. So even though |
945 |
Cgf the v1.81=>v1.82 revision would change results in |
946 |
Cgf warming conditions, the lab_sea results were not changed. |
947 |
|
948 |
DO J=1,sNy |
949 |
DO I=1,sNx |
950 |
#ifdef FENTY_DELTA_HEFF_OPEN_WATER_FLUXES |
951 |
c Thickening of the existing ice pack is limited by the |
952 |
c residual capability of the ocean to melt (weighted by |
953 |
c the ice-covered area) |
954 |
tmpscal2 = MAX(-HEFF(i,j,bi,bj) , |
955 |
& r_QbyATM_cover(I,J) + AREApreTH(I,J) * r_QbyOCN(I,J)) |
956 |
#else |
957 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
958 |
#endif FENTY_DELTA_HEFF_OPEN_WATER_FLUXES |
959 |
|
960 |
d_HEFFbyATMonICE(I,J)=d_HEFFbyATMonICE(I,J)+tmpscal2 |
961 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
962 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
963 |
|
964 |
DIAGarrayA(I,J) = d_HEFFbyATMonICE(I,J) |
965 |
DIAGarrayB(I,J) = r_QbyATM_cover(I,J) |
966 |
ENDDO |
967 |
ENDDO |
968 |
|
969 |
#ifdef ALLOW_DIAGNOSTICS |
970 |
IF ( useDiagnostics ) THEN |
971 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM02',myThid) ) THEN |
972 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
973 |
& 'SIDDUM02',0,1,3,bi,bj,myThid) |
974 |
ENDIF |
975 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM09',myThid) ) THEN |
976 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
977 |
& 'SIDDUM09',0,1,3,bi,bj,myThid) |
978 |
ENDIF |
979 |
ENDIF |
980 |
#endif |
981 |
|
982 |
C attribute precip to fresh water or snow stock, |
983 |
C depending on atmospheric conditions. |
984 |
C ================================================= |
985 |
#ifdef ALLOW_ATM_TEMP |
986 |
#ifdef ALLOW_AUTODIFF_TAMC |
987 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
988 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
989 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
990 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
991 |
DO J=1,sNy |
992 |
DO I=1,sNx |
993 |
C possible alternatives to the a_QbyATM_cover criterium |
994 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
995 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
996 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
997 |
C add precip as snow |
998 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
999 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1000 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1001 |
ELSE |
1002 |
C add precip to the fresh water bucket |
1003 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1004 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1005 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1006 |
ENDIF |
1007 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1008 |
ENDDO |
1009 |
ENDDO |
1010 |
Cgf note: this does not affect air-sea heat flux, |
1011 |
Cgf since the implied air heat gain to turn |
1012 |
Cgf rain to snow is not a surface process. |
1013 |
#ifdef ALLOW_DIAGNOSTICS |
1014 |
IF ( useDiagnostics ) THEN |
1015 |
IF ( DIAGNOSTICS_IS_ON('SIsnPrcp',myThid) ) THEN |
1016 |
DO J=1,sNy |
1017 |
DO I=1,sNx |
1018 |
DIAGarray(I,J) = maskC(I,J,kSurface,bi,bj) |
1019 |
& * d_HSNWbyRAIN(I,J)*SEAICE_rhoSnow/SEAICE_deltaTtherm |
1020 |
ENDDO |
1021 |
ENDDO |
1022 |
CALL DIAGNOSTICS_FILL(DIAGarray,'SIsnPrcp',0,1,3,bi,bj,myThid) |
1023 |
ENDIF |
1024 |
ENDIF |
1025 |
#endif /* ALLOW_DIAGNOSTICS */ |
1026 |
#endif /* ALLOW_ATM_TEMP */ |
1027 |
|
1028 |
C compute snow melt due to heat available from ocean. |
1029 |
C ================================================================= |
1030 |
|
1031 |
Cgf do we need to keep this comment and cpp bracket? |
1032 |
Cph( very sensitive bit here by JZ |
1033 |
#ifndef SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING |
1034 |
#ifdef ALLOW_AUTODIFF_TAMC |
1035 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1036 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1037 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1038 |
DO J=1,sNy |
1039 |
DO I=1,sNx |
1040 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1041 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1042 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1043 |
Cgf no additional dependency through snow |
1044 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1045 |
#endif |
1046 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
1047 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1048 |
& -d_HSNWbyOCNonSNW(I,J)/ICE2SNOW |
1049 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1050 |
ENDDO |
1051 |
ENDDO |
1052 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1053 |
Cph) |
1054 |
|
1055 |
C gain of new ice over open water |
1056 |
C =============================== |
1057 |
#ifndef SEAICE_GROWTH_LEGACY |
1058 |
#ifdef SEAICE_DO_OPEN_WATER_GROWTH |
1059 |
#ifdef ALLOW_AUTODIFF_TAMC |
1060 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1061 |
CADJ STORE r_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1062 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1063 |
CADJ STORE a_QSWbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1064 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1065 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1066 |
DO J=1,sNy |
1067 |
DO I=1,sNx |
1068 |
|
1069 |
#ifdef FENTY_DELTA_HEFF_OPEN_WATER_FLUXES |
1070 |
c The sum of open water fluxes + the residual ocean-ice |
1071 |
c fluxes (weighted by the open water fraction). |
1072 |
c Using the McPhee parameterization, r_QbyOCN .LE. ZERO |
1073 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1074 |
& (1.0 _d 0 - AREApreTH(i,J)) |
1075 |
|
1076 |
tmpscal2=SWFRACB * a_QSWbyATM_open(I,J) |
1077 |
|
1078 |
c Open water convergent heat fluxes do not melt ice directly |
1079 |
c but indirectly by first heating the ocean. |
1080 |
tmpscal3 = MAX(0.0 _d 0, tmpscal1-tmpscal2) |
1081 |
|
1082 |
#else /* FENTY_DELTA_HEFF_OPEN_WATER_FLUXES */ |
1083 |
|
1084 |
if ( (r_QbyATM_open(I,J).GT.0. _d 0).AND. |
1085 |
& (HEFF(I,J,bi,bj).GT.0. _d 0) ) then |
1086 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) |
1087 |
C at this point r_QbyOCN(i,j)<=0 and represents the heat |
1088 |
C that is still needed to get to the first layer to freezing point |
1089 |
tmpscal2=SWFRACB*(a_QSWbyATM_cover(I,J) |
1090 |
& +a_QSWbyATM_open(I,J)) |
1091 |
C SWFRACB*tmpscal2<=0 is the heat (out of qnet) that is not |
1092 |
C going to the first layer, which favors its freezing |
1093 |
tmpscal3=MAX(0. _d 0, tmpscal1-tmpscal2) |
1094 |
else |
1095 |
tmpscal3=0. _d 0 |
1096 |
endif |
1097 |
#endif /* FENTY DELTA HEFF OPEN WATER FLUXES */ |
1098 |
|
1099 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1100 |
|
1101 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
1102 |
& * d_HEFFbyATMonOCN_open(I,J) |
1103 |
|
1104 |
|
1105 |
C The distinct d_HEFFbyATMonOCN_open array is only needed for d_AREA computation. |
1106 |
C For the rest it is treated as another contribution to d_HEFFbyATMonOCN. |
1107 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1108 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1109 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1110 |
|
1111 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) |
1112 |
& * r_QbyATM_open(I,J) |
1113 |
|
1114 |
ENDDO |
1115 |
ENDDO |
1116 |
|
1117 |
#ifdef ALLOW_DIAGNOSTICS |
1118 |
IF ( useDiagnostics ) THEN |
1119 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM08',myThid) ) THEN |
1120 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
1121 |
& 'SIDDUM08',0,1,3,bi,bj,myThid) |
1122 |
ENDIF |
1123 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM03',myThid) ) THEN |
1124 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1125 |
& 'SIDDUM03',0,1,3,bi,bj,myThid) |
1126 |
ENDIF |
1127 |
ENDIF |
1128 |
#endif /* ALLOW DIAGNOSTICS */ |
1129 |
|
1130 |
#endif /* SEAICE_DO_OPEN_WATER_GROWTH */ |
1131 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1132 |
|
1133 |
C convert snow to ice if submerged. |
1134 |
C ================================= |
1135 |
|
1136 |
#ifndef SEAICE_GROWTH_LEGACY |
1137 |
C note: in legacy, this process is done at the end |
1138 |
#ifdef ALLOW_SEAICE_FLOODING |
1139 |
#ifdef ALLOW_AUTODIFF_TAMC |
1140 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1141 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1142 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1143 |
IF ( SEAICEuseFlooding ) THEN |
1144 |
DO J=1,sNy |
1145 |
DO I=1,sNx |
1146 |
hDraft = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1147 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)/rhoConst |
1148 |
tmpscal1 = MAX( 0. _d 0, hDraft - HEFF(I,J,bi,bj)) |
1149 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1150 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1151 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1152 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1153 |
ENDDO |
1154 |
ENDDO |
1155 |
ENDIF |
1156 |
#endif /* ALLOW_SEAICE_FLOODING */ |
1157 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1158 |
|
1159 |
|
1160 |
C =================================================================== |
1161 |
C ==========PART 4: determine ice cover fraction increments=========- |
1162 |
C =================================================================== |
1163 |
|
1164 |
#ifdef ALLOW_AUTODIFF_TAMC |
1165 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1166 |
CADJ STORE d_HEFFbyATMonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1167 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1168 |
CADJ STORE d_HEFFbyATMonOCN_open=comlev1_bibj,key=iicekey,byte=isbyte |
1169 |
CADJ STORE a_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1170 |
CADJ STORE heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1171 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1172 |
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1173 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1174 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1175 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1176 |
|
1177 |
DO J=1,sNy |
1178 |
DO I=1,sNx |
1179 |
C compute ice melt due to ATM (and OCN) heat stocks |
1180 |
|
1181 |
#ifdef FENTY_AREA_EXPANSION_CONTRACTION |
1182 |
DIAGarrayA(I,J) = ZERO |
1183 |
DIAGarrayB(I,J) = ZERO |
1184 |
DIAGarrayC(I,J) = ZERO |
1185 |
DIAGarray(I,J) = ZERO |
1186 |
|
1187 |
c The minimum effective thickness used in the ice contraction |
1188 |
c parameterization. |
1189 |
heff_star = sqrt(HEFFpreTH(I,J)*HEFFPreTH(I,J) + 0.01 _d 0) |
1190 |
|
1191 |
c the various thickness tendency terms |
1192 |
tmpscal1 = d_HEFFbyATMOnOCN_open(I,J) |
1193 |
tmpscal2 = d_HEFFbyATMOnICE(I,J) |
1194 |
tmpscal3 = d_HEFFbyOCNonICE(I,J) |
1195 |
|
1196 |
c Part 1: Expand ice cover in open-water areas |
1197 |
|
1198 |
C All new ice cover is created from divergent air-sea heat fluxes. Divergent |
1199 |
c air-sea heat fluxes must exceed the potential convergent ocean-ice heat fluxes |
1200 |
c for ice to form. tmpscal1 = divergent air-sea heat fluxes - ocean-ice heat fluxes |
1201 |
|
1202 |
IF (tmpscal1 .GT. ZERO) then |
1203 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
1204 |
d_AREAbyATM(I,J)=tmpscal1/HO_south |
1205 |
ELSE |
1206 |
d_AREAbyATM(I,J)=tmpscal1/HO |
1207 |
ENDIF |
1208 |
ENDIF |
1209 |
DIAGarrayA(I,J) = d_AREAbyATM(I,J) |
1210 |
|
1211 |
c Part 2: Reduce ice cover when existing ice thins from above |
1212 |
|
1213 |
c Ice concentrations are reduced whenever existing ice thins from surface |
1214 |
c heat flux convergence. |
1215 |
if (tmpscal2 .LE. ZERO) then |
1216 |
d_AREAbyICE(I,J) = |
1217 |
& HALF * tmpscal2 * AREApreTH(I,J)/heff_star |
1218 |
endif |
1219 |
DIAGarrayB(I,J) = d_AREAbyICE(I,J) |
1220 |
|
1221 |
c Part 3: Reduce ice cover when existing ice thins from below |
1222 |
|
1223 |
c Sensible heat transfer from the ocean to the sea ice thins it and |
1224 |
c reduces concentrations |
1225 |
if (tmpscal3 .LE.ZERO) then |
1226 |
d_AREAbyOCN(I,J) = |
1227 |
& HALF * tmpscal3 * AREApreTH(I,J)/heff_star |
1228 |
endif |
1229 |
DIAGarrayC(I,J) = d_AREAbyOCN(I,J) |
1230 |
|
1231 |
DIAGarray(I,J) = d_AREAbyICE(I,J) + |
1232 |
& d_AREAbyATM(I,J) + d_AREAbyOCN(I,J) |
1233 |
|
1234 |
#else FENTY_AREA_EXPANSION_CONTRACTION |
1235 |
|
1236 |
#ifdef SEAICE_GROWTH_LEGACY |
1237 |
|
1238 |
C compute heff after ice melt by ocn: |
1239 |
tmpscal0=HEFF(I,J,bi,bj) |
1240 |
& - d_HEFFbyATMonOCN(I,J) - d_HEFFbyFLOODING(I,J) |
1241 |
C compute available heat left after snow melt by atm: |
1242 |
tmpscal1= a_QbyATM_open(I,J)+a_QbyATM_cover(I,J) |
1243 |
& - d_HSNWbyATMonSNW(I,J)/ICE2SNOW |
1244 |
C (cannot melt more than all the ice) |
1245 |
tmpscal2 = MAX(-tmpscal0,tmpscal1) |
1246 |
tmpscal3 = MIN(ZERO,tmpscal2) |
1247 |
#ifdef ALLOW_DIAGNOSTICS |
1248 |
DIAGarray(I,J) = tmpscal2 |
1249 |
#endif |
1250 |
C gain of new ice over open water |
1251 |
tmpscal4 = MAX(ZERO,a_QbyATM_open(I,J)) |
1252 |
|
1253 |
#else /* SEAICE_GROWTH_LEGACY */ |
1254 |
|
1255 |
# ifdef SEAICE_OCN_MELT_ACT_ON_AREA |
1256 |
C ice cover reduction by joint OCN+ATM melt |
1257 |
tmpscal3 = MIN( 0. _d 0 , |
1258 |
& d_HEFFbyATMonOCN(I,J)+d_HEFFbyOCNonICE(I,J) ) |
1259 |
# else |
1260 |
C ice cover reduction by ATM melt only -- as in legacy code |
1261 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN(I,J) ) |
1262 |
# endif |
1263 |
C gain of new ice over open water |
1264 |
|
1265 |
# ifdef SEAICE_DO_OPEN_WATER_GROWTH |
1266 |
C the one effectively used to increment HEFF |
1267 |
tmpscal4 = d_HEFFbyATMonOCN_open(I,J) |
1268 |
# else |
1269 |
C the virtual one -- as in legcy code |
1270 |
tmpscal4 = MAX(ZERO,a_QbyATM_open(I,J)) |
1271 |
# endif |
1272 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1273 |
|
1274 |
C compute cover fraction tendency |
1275 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
1276 |
d_AREAbyATM(I,J)=tmpscal4/HO_south |
1277 |
ELSE |
1278 |
d_AREAbyATM(I,J)=tmpscal4/HO |
1279 |
ENDIF |
1280 |
d_AREAbyATM(I,J)=d_AREAbyATM(I,J) |
1281 |
#ifdef SEAICE_GROWTH_LEGACY |
1282 |
& +HALF*tmpscal3*AREApreTH(I,J) |
1283 |
& /(tmpscal0+.00001 _d 0) |
1284 |
#else |
1285 |
& +HALF*tmpscal3/heffActual(I,J) |
1286 |
#endif |
1287 |
|
1288 |
#endif FENTY_AREA_EXPANSION_CONTRACTION |
1289 |
|
1290 |
C apply tendency |
1291 |
IF ( (HEFF(i,j,bi,bj).GT.0. _d 0).OR. |
1292 |
& (HSNOW(i,j,bi,bj).GT.0. _d 0) ) THEN |
1293 |
AREA(I,J,bi,bj)=max(0. _d 0 , min( 1. _d 0, |
1294 |
& AREA(I,J,bi,bj)+d_AREAbyATM(I,J) |
1295 |
#ifdef FENTY_AREA_EXPANSION_CONTRACTION |
1296 |
& + d_AREAbyOCN(I,J) + d_AREAbyICE(I,J) |
1297 |
#endif |
1298 |
& )) |
1299 |
ELSE |
1300 |
AREA(I,J,bi,bj)=0. _d 0 |
1301 |
ENDIF |
1302 |
ENDDO |
1303 |
ENDDO |
1304 |
|
1305 |
#ifdef ALLOW_DIAGNOSTICS |
1306 |
IF ( useDiagnostics ) THEN |
1307 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM04',myThid) ) THEN |
1308 |
CALL DIAGNOSTICS_FILL(DIAGarray, |
1309 |
& 'SIDDUM04',0,1,3,bi,bj,myThid) |
1310 |
ENDIF |
1311 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM05',myThid) ) THEN |
1312 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1313 |
& 'SIDDUM05',0,1,3,bi,bj,myThid) |
1314 |
ENDIF |
1315 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM06',myThid) ) THEN |
1316 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
1317 |
& 'SIDDUM06',0,1,3,bi,bj,myThid) |
1318 |
ENDIF |
1319 |
IF ( DIAGNOSTICS_IS_ON('SIDDUM07',myThid) ) THEN |
1320 |
CALL DIAGNOSTICS_FILL(DIAGarrayC, |
1321 |
& 'SIDDUM07',0,1,3,bi,bj,myThid) |
1322 |
ENDIF |
1323 |
ENDIF |
1324 |
#endif |
1325 |
|
1326 |
#ifdef ALLOW_AUTODIFF_TAMC |
1327 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1328 |
Cgf 'bulk' linearization of area=f(HEFF) |
1329 |
if ( SEAICEadjMODE.GE.1 ) then |
1330 |
DO J=1,sNy |
1331 |
DO I=1,sNx |
1332 |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
1333 |
AREA(I,J,bi,bj) = AREApreTH(I,J) + 0.1 _d 0 * |
1334 |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
1335 |
ENDDO |
1336 |
ENDDO |
1337 |
endif |
1338 |
#endif |
1339 |
#endif |
1340 |
|
1341 |
#ifdef SEAICE_GROWTH_LEGACY |
1342 |
#ifdef ALLOW_DIAGNOSTICS |
1343 |
IF ( useDiagnostics ) THEN |
1344 |
IF ( DIAGNOSTICS_IS_ON('SIfice ',myThid) ) THEN |
1345 |
CALL DIAGNOSTICS_FILL(DIAGarray,'SIfice ',0,1,3,bi,bj,myThid) |
1346 |
ENDIF |
1347 |
ENDIF |
1348 |
#endif |
1349 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1350 |
|
1351 |
|
1352 |
C =================================================================== |
1353 |
C =============PART 5: determine ice salinity increments============= |
1354 |
C =================================================================== |
1355 |
|
1356 |
#ifndef SEAICE_SALINITY |
1357 |
# ifdef ALLOW_AUTODIFF_TAMC |
1358 |
# ifdef ALLOW_SALT_PLUME |
1359 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
1360 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1361 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1362 |
CADJ STORE d_HEFFbyATMonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1363 |
CADJ STORE d_HEFFbyFLOODING = comlev1_bibj,key=iicekey,byte=isbyte |
1364 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1365 |
CADJ & key = iicekey, byte = isbyte |
1366 |
# endif /* ALLOW_SALT_PLUME */ |
1367 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
1368 |
DO J=1,sNy |
1369 |
DO I=1,sNx |
1370 |
Cgf note: flooding does count negatively |
1371 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
1372 |
& d_HEFFbyATMonICE(I,J) + |
1373 |
& d_HEFFbyATMonOCN(I,J) - d_HEFFbyFLOODING(I,J) |
1374 |
tmpscal2 = tmpscal1 * SIsal0 * HEFFM(I,J,bi,bj) |
1375 |
& /SEAICE_deltaTtherm * ICE2WATR * rhoConstFresh |
1376 |
saltFlux(I,J,bi,bj) = tmpscal2 |
1377 |
#ifdef ALLOW_SALT_PLUME |
1378 |
tmpscal3 = tmpscal1*salt(I,j,kSurface,bi,bj)*HEFFM(I,J,bi,bj) |
1379 |
& /SEAICE_deltaTtherm * ICE2WATR * rhoConstFresh |
1380 |
saltPlumeFlux(I,J,bi,bj) = MAX( tmpscal3-tmpscal2 , 0. _d 0) |
1381 |
#endif /* ALLOW_SALT_PLUME */ |
1382 |
ENDDO |
1383 |
ENDDO |
1384 |
#endif |
1385 |
|
1386 |
#ifdef ALLOW_ATM_TEMP |
1387 |
#ifdef SEAICE_SALINITY |
1388 |
|
1389 |
#ifdef SEAICE_GROWTH_LEGACY |
1390 |
# ifdef ALLOW_AUTODIFF_TAMC |
1391 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1392 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
1393 |
DO J=1,sNy |
1394 |
DO I=1,sNx |
1395 |
C set HSALT = 0 if HSALT < 0 and compute salt to remove from ocean |
1396 |
IF ( HSALT(I,J,bi,bj) .LT. 0.0 ) THEN |
1397 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
1398 |
& HSALT(I,J,bi,bj) / SEAICE_deltaTtherm |
1399 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
1400 |
ENDIF |
1401 |
ENDDO |
1402 |
ENDDO |
1403 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1404 |
|
1405 |
#ifdef ALLOW_AUTODIFF_TAMC |
1406 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1407 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1408 |
|
1409 |
DO J=1,sNy |
1410 |
DO I=1,sNx |
1411 |
C sum up the terms that affect the salt content of the ice pack |
1412 |
tmpscal1=d_HEFFbyOCNonICE(I,J)+d_HEFFbyATMonOCN(I,J)+ |
1413 |
& d_HEFFbyATMonICE(I,J) |
1414 |
|
1415 |
C recompute HEFF before thermodyncamic updates (which is not AREApreTH in legacy code) |
1416 |
tmpscal2=HEFF(I,J,bi,bj)-tmpscal1-d_HEFFbyFLOODING(I,J) |
1417 |
C tmpscal1 > 0 : m of sea ice that is created |
1418 |
IF ( tmpscal1 .GE. 0.0 ) THEN |
1419 |
saltFlux(I,J,bi,bj) = |
1420 |
& HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm |
1421 |
& *SEAICE_salinity*salt(I,j,kSurface,bi,bj) |
1422 |
& *tmpscal1*ICE2WATR*rhoConstFresh |
1423 |
#ifdef ALLOW_SALT_PLUME |
1424 |
C saltPlumeFlux is defined only during freezing: |
1425 |
saltPlumeFlux(I,J,bi,bj)= |
1426 |
& HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm |
1427 |
& *(1-SEAICE_salinity)*salt(I,j,kSurface,bi,bj) |
1428 |
& *tmpscal1*ICE2WATR*rhoConstFresh |
1429 |
C if SaltPlumeSouthernOcean=.FALSE. turn off salt plume in Southern Ocean |
1430 |
IF ( .NOT. SaltPlumeSouthernOcean ) THEN |
1431 |
IF ( YC(I,J,bi,bj) .LT. 0.0 _d 0 ) |
1432 |
& saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
1433 |
ENDIF |
1434 |
#endif /* ALLOW_SALT_PLUME */ |
1435 |
|
1436 |
C tmpscal1 < 0 : m of sea ice that is melted |
1437 |
ELSE |
1438 |
saltFlux(I,J,bi,bj) = |
1439 |
& HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm |
1440 |
& *HSALT(I,J,bi,bj) |
1441 |
& *tmpscal1/tmpscal2 |
1442 |
#ifdef ALLOW_SALT_PLUME |
1443 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
1444 |
#endif /* ALLOW_SALT_PLUME */ |
1445 |
ENDIF |
1446 |
C update HSALT based on surface saltFlux |
1447 |
HSALT(I,J,bi,bj) = HSALT(I,J,bi,bj) + |
1448 |
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
1449 |
saltFlux(I,J,bi,bj) = |
1450 |
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
1451 |
#ifdef SEAICE_GROWTH_LEGACY |
1452 |
C set HSALT = 0 if HEFF = 0 and compute salt to dump into ocean |
1453 |
IF ( HEFF(I,J,bi,bj) .EQ. 0.0 ) THEN |
1454 |
saltFlux(I,J,bi,bj) = saltFlux(I,J,bi,bj) - |
1455 |
& HEFFM(I,J,bi,bj) * HSALT(I,J,bi,bj) / |
1456 |
& SEAICE_deltaTtherm |
1457 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
1458 |
#ifdef ALLOW_SALT_PLUME |
1459 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
1460 |
#endif /* ALLOW_SALT_PLUME */ |
1461 |
ENDIF |
1462 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1463 |
ENDDO |
1464 |
ENDDO |
1465 |
#endif /* SEAICE_SALINITY */ |
1466 |
#endif /* ALLOW_ATM_TEMP */ |
1467 |
|
1468 |
|
1469 |
C ======================================================================= |
1470 |
C =====LEGACY PART 5.5: treat pathological cases, then do flooding ====== |
1471 |
C ======================================================================= |
1472 |
|
1473 |
#ifdef SEAICE_GROWTH_LEGACY |
1474 |
|
1475 |
C treat values of ice cover fraction oustide |
1476 |
C the [0 1] range, and other such issues. |
1477 |
C =========================================== |
1478 |
|
1479 |
Cgf note: this part cannot be heat and water conserving |
1480 |
|
1481 |
#ifdef ALLOW_AUTODIFF_TAMC |
1482 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
1483 |
CADJ & key = iicekey, byte = isbyte |
1484 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
1485 |
CADJ & key = iicekey, byte = isbyte |
1486 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1487 |
DO J=1,sNy |
1488 |
DO I=1,sNx |
1489 |
C NOW SET AREA(I,J,bi,bj)=0 WHERE NO ICE IS |
1490 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj) |
1491 |
& ,HEFF(I,J,bi,bj)/.0001 _d 0) |
1492 |
ENDDO |
1493 |
ENDDO |
1494 |
|
1495 |
#ifdef ALLOW_AUTODIFF_TAMC |
1496 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
1497 |
CADJ & key = iicekey, byte = isbyte |
1498 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1499 |
DO J=1,sNy |
1500 |
DO I=1,sNx |
1501 |
C NOW TRUNCATE AREA |
1502 |
AREA(I,J,bi,bj)=MIN(ONE,AREA(I,J,bi,bj)) |
1503 |
ENDDO |
1504 |
ENDDO |
1505 |
|
1506 |
#ifdef ALLOW_AUTODIFF_TAMC |
1507 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
1508 |
CADJ & key = iicekey, byte = isbyte |
1509 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
1510 |
CADJ & key = iicekey, byte = isbyte |
1511 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1512 |
DO J=1,sNy |
1513 |
DO I=1,sNx |
1514 |
AREA(I,J,bi,bj) = MAX(ZERO,AREA(I,J,bi,bj)) |
1515 |
HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj)) |
1516 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
1517 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
1518 |
#ifdef SEAICE_CAP_HEFF |
1519 |
C This is not energy conserving, but at least it conserves fresh water |
1520 |
tmpscal0 = -MAX(HEFF(I,J,bi,bj)-MAX_HEFF,0. _d 0) |
1521 |
d_HEFFbyNeg(I,J) = d_HEFFbyNeg(I,J) + tmpscal0 |
1522 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal0 |
1523 |
#endif /* SEAICE_CAP_HEFF */ |
1524 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
1525 |
ENDDO |
1526 |
ENDDO |
1527 |
|
1528 |
#ifdef ALLOW_DIAGNOSTICS |
1529 |
IF ( useDiagnostics ) THEN |
1530 |
IF ( DIAGNOSTICS_IS_ON('SIthdgrh',myThid) ) THEN |
1531 |
DO J=1,sNy |
1532 |
DO I=1,sNx |
1533 |
tmparr1(I,J) = (HEFF(I,J,bi,bj)-HEFFpreTH(I,J)) |
1534 |
& /SEAICE_deltaTtherm |
1535 |
ENDDO |
1536 |
ENDDO |
1537 |
CALL DIAGNOSTICS_FILL(tmparr1,'SIthdgrh',0,1,3,bi,bj,myThid) |
1538 |
ENDIF |
1539 |
ENDIF |
1540 |
#endif /* ALLOW_DIAGNOSTICS */ |
1541 |
|
1542 |
C convert snow to ice if submerged. |
1543 |
C ================================= |
1544 |
|
1545 |
#ifdef ALLOW_SEAICE_FLOODING |
1546 |
IF ( SEAICEuseFlooding ) THEN |
1547 |
DO J=1,sNy |
1548 |
DO I=1,sNx |
1549 |
hDraft = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1550 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)/rhoConst |
1551 |
tmpscal1 = MAX( 0. _d 0, hDraft - HEFF(I,J,bi,bj)) |
1552 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1553 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1554 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1555 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1556 |
ENDDO |
1557 |
ENDDO |
1558 |
#ifdef ALLOW_DIAGNOSTICS |
1559 |
IF ( useDiagnostics ) THEN |
1560 |
IF ( DIAGNOSTICS_IS_ON('SIsnwice',myThid) ) THEN |
1561 |
DO J=1,sNy |
1562 |
DO I=1,sNx |
1563 |
tmparr1(I,J) = d_HEFFbyFLOODING(I,J)/SEAICE_deltaTtherm |
1564 |
ENDDO |
1565 |
ENDDO |
1566 |
CALL DIAGNOSTICS_FILL(tmparr1,'SIsnwice',0,1,3,bi,bj,myThid) |
1567 |
ENDIF |
1568 |
ENDIF |
1569 |
#endif /* ALLOW_DIAGNOSTICS */ |
1570 |
ENDIF |
1571 |
#endif /* ALLOW_SEAICE_FLOODING */ |
1572 |
|
1573 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1574 |
|
1575 |
|
1576 |
C =================================================================== |
1577 |
C ===============PART 6: determine ice age increments================ |
1578 |
C =================================================================== |
1579 |
|
1580 |
#ifdef SEAICE_AGE |
1581 |
# ifndef SEAICE_AGE_VOL |
1582 |
C Sources and sinks for sea ice age: |
1583 |
C assume that a) freezing: new ice fraction forms with zero age |
1584 |
C b) melting: ice fraction vanishes with current age |
1585 |
DO J=1,sNy |
1586 |
DO I=1,sNx |
1587 |
IF ( AREA(I,J,bi,bj) .GT. 0.15 ) THEN |
1588 |
IF ( AREA(i,j,bi,bj) .LT. AREApreTH(i,j) ) THEN |
1589 |
C-- scale effective ice-age to account for ice-age sink associated with melting |
1590 |
IceAge(i,j,bi,bj) = IceAge(i,j,bi,bj) |
1591 |
& *AREA(i,j,bi,bj)/AREApreTH(i,j) |
1592 |
ENDIF |
1593 |
C-- account for aging: |
1594 |
IceAge(i,j,bi,bj) = IceAge(i,j,bi,bj) |
1595 |
& + AREA(i,j,bi,bj) * SEAICE_deltaTtherm |
1596 |
ELSE |
1597 |
IceAge(i,j,bi,bj) = ZERO |
1598 |
ENDIF |
1599 |
ENDDO |
1600 |
ENDDO |
1601 |
# else /* ifdef SEAICE_AGE_VOL */ |
1602 |
C Sources and sinks for sea ice age: |
1603 |
C assume that a) freezing: new ice volume forms with zero age |
1604 |
C b) melting: ice volume vanishes with current age |
1605 |
DO J=1,sNy |
1606 |
DO I=1,sNx |
1607 |
C-- compute actual age from effective age: |
1608 |
IF (AREApreTH(i,j).GT.0. _d 0) THEN |
1609 |
tmpscal1=IceAge(i,j,bi,bj)/AREApreTH(i,j) |
1610 |
ELSE |
1611 |
tmpscal1=0. _d 0 |
1612 |
ENDIF |
1613 |
IF ( (HEFFpreTH(i,j).LT.HEFF(i,j,bi,bj)).AND. |
1614 |
& (AREA(i,j,bi,bj).GT.0.15) ) THEN |
1615 |
tmpscal2=tmpscal1*HEFFpreTH(i,j)/ |
1616 |
& HEFF(i,j,bi,bj)+SEAICE_deltaTtherm |
1617 |
ELSEIF (AREA(i,j,bi,bj).LE.0.15) THEN |
1618 |
tmpscal2=0. _d 0 |
1619 |
ELSE |
1620 |
tmpscal2=tmpscal1+SEAICE_deltaTtherm |
1621 |
ENDIF |
1622 |
C-- re-scale to effective age: |
1623 |
IceAge(i,j,bi,bj) = tmpscal2*AREA(i,j,bi,bj) |
1624 |
ENDDO |
1625 |
ENDDO |
1626 |
# endif /* SEAICE_AGE_VOL */ |
1627 |
#endif /* SEAICE_AGE */ |
1628 |
|
1629 |
|
1630 |
C =================================================================== |
1631 |
C ==============PART 7: determine ocean model forcing================ |
1632 |
C =================================================================== |
1633 |
|
1634 |
C compute net heat flux leaving/entering the ocean, |
1635 |
C accounting for the part used in melt/freeze processes |
1636 |
C ===================================================== |
1637 |
|
1638 |
DO J=1,sNy |
1639 |
DO I=1,sNx |
1640 |
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
1641 |
& - ( d_HEFFbyOCNonICE(I,J) + |
1642 |
#ifdef FENTY_DELTA_HEFF_OPEN_WATER_FLUXES |
1643 |
& a_QSWbyATM_cover(I,J) + |
1644 |
#endif /* FENTY_DELTA_HEFF_OPEN_WATER_FLUXES */ |
1645 |
& d_HSNWbyOCNonSNW(I,J)/ICE2SNOW + |
1646 |
& d_HEFFbyNEG(I,J) + |
1647 |
& d_HSNWbyNEG(I,J)/ICE2SNOW ) |
1648 |
& * maskC(I,J,kSurface,bi,bj) |
1649 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
1650 |
ENDDO |
1651 |
ENDDO |
1652 |
|
1653 |
#ifdef ALLOW_DIAGNOSTICS |
1654 |
IF ( useDiagnostics ) THEN |
1655 |
IF ( DIAGNOSTICS_IS_ON('SIqneto ',myThid) ) THEN |
1656 |
DO J=1,sNy |
1657 |
DO I=1,sNx |
1658 |
DIAGarray(I,J) = r_QbyATM_open(I,J) * convertHI2Q |
1659 |
ENDDO |
1660 |
ENDDO |
1661 |
CALL DIAGNOSTICS_FILL(DIAGarray,'SIqneto ',0,1,3,bi,bj,myThid) |
1662 |
ENDIF |
1663 |
IF ( DIAGNOSTICS_IS_ON('SIqneti ',myThid) ) THEN |
1664 |
DO J=1,sNy |
1665 |
DO I=1,sNx |
1666 |
DIAGarray(I,J) = r_QbyATM_cover(I,J) * convertHI2Q |
1667 |
ENDDO |
1668 |
ENDDO |
1669 |
CALL DIAGNOSTICS_FILL(DIAGarray,'SIqneti ',0,1,3,bi,bj,myThid) |
1670 |
ENDIF |
1671 |
ENDIF |
1672 |
#endif /* ALLOW_DIAGNOSTICS */ |
1673 |
|
1674 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
1675 |
C ====================================================== |
1676 |
|
1677 |
DO J=1,sNy |
1678 |
DO I=1,sNx |
1679 |
QNET(I,J,bi,bj) = QNET(I,J,bi,bj)*convertHI2Q |
1680 |
QSW(I,J,bi,bj) = QSW(I,J,bi,bj)*convertHI2Q |
1681 |
ENDDO |
1682 |
ENDDO |
1683 |
|
1684 |
C compute net fresh water flux leaving/entering |
1685 |
C the ocean, accounting for fresh/salt water stocks. |
1686 |
C ================================================== |
1687 |
|
1688 |
#ifdef ALLOW_ATM_TEMP |
1689 |
DO J=1,sNy |
1690 |
DO I=1,sNx |
1691 |
tmpscal1= d_HSNWbyATMonSNW(I,J)/ICE2SNOW |
1692 |
& +d_HFRWbyRAIN(I,J) |
1693 |
& +d_HSNWbyOCNonSNW(I,J)/ICE2SNOW |
1694 |
& +d_HEFFbyOCNonICE(I,J) |
1695 |
& +d_HEFFbyATMonOCN(I,J) |
1696 |
& +d_HEFFbyATMonICE(I,J) |
1697 |
& +d_HEFFbyNEG(I,J) |
1698 |
& +d_HSNWbyNEG(I,J)/ICE2SNOW |
1699 |
#ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
1700 |
& +a_FWbySublim(I,J) |
1701 |
#endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
1702 |
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
1703 |
& ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
1704 |
& * ( ONE - AREApreTH(I,J) ) |
1705 |
#ifdef ALLOW_RUNOFF |
1706 |
& - RUNOFF(I,J,bi,bj) |
1707 |
#endif /* ALLOW_RUNOFF */ |
1708 |
& + tmpscal1*convertHI2PRECIP |
1709 |
& )*rhoConstFresh |
1710 |
ENDDO |
1711 |
ENDDO |
1712 |
|
1713 |
#ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
1714 |
DO J=1,sNy |
1715 |
DO I=1,sNx |
1716 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
1717 |
& PRECIP(I,J,bi,bj) |
1718 |
& - EVAP(I,J,bi,bj) |
1719 |
& *( ONE - AREApreTH(I,J) ) |
1720 |
& + RUNOFF(I,J,bi,bj) |
1721 |
& )*rhoConstFresh |
1722 |
ENDDO |
1723 |
ENDDO |
1724 |
#endif |
1725 |
#endif /* ALLOW_ATM_TEMP */ |
1726 |
|
1727 |
#ifdef SEAICE_DEBUG |
1728 |
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
1729 |
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
1730 |
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
1731 |
#endif /* SEAICE_DEBUG */ |
1732 |
|
1733 |
C Sea Ice Load on the sea surface. |
1734 |
C ================================= |
1735 |
|
1736 |
#ifdef ALLOW_AUTODIFF_TAMC |
1737 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1738 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1739 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1740 |
|
1741 |
IF ( useRealFreshWaterFlux ) THEN |
1742 |
DO J=1,sNy |
1743 |
DO I=1,sNx |
1744 |
#ifdef SEAICE_CAP_ICELOAD |
1745 |
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
1746 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1747 |
tmpscal2 = min(tmpscal1,heffTooHeavy*rhoConst) |
1748 |
#else |
1749 |
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
1750 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1751 |
#endif |
1752 |
sIceLoad(i,j,bi,bj) = tmpscal2 |
1753 |
ENDDO |
1754 |
ENDDO |
1755 |
ENDIF |
1756 |
|
1757 |
C close bi,bj loops |
1758 |
ENDDO |
1759 |
ENDDO |
1760 |
|
1761 |
RETURN |
1762 |
END |