/[MITgcm]/MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/kpp_calc.F
ViewVC logotype

Contents of /MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/kpp_calc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download)
Tue Apr 29 06:49:39 2014 UTC (11 years, 3 months ago) by atn
Branch: MAIN
Changes since 1.1: +4 -1 lines
in progress:
1. add SALT_PLUME_OPTIONS.h to several files;
2. replace SPalpha (vol) with SPbrineSconst (salinity);
3. move diagnostics outside bi,bj loop.

1 C $Header: /u/gcmpack/MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/kpp_calc.F,v 1.1 2014/04/20 04:03:07 atn Exp $
2 C $Name: $
3
4 #include "KPP_OPTIONS.h"
5 #ifdef ALLOW_SALT_PLUME
6 #include "SALT_PLUME_OPTIONS.h"
7 #endif
8
9 CBOP
10 C !ROUTINE: KPP_CALC
11
12 C !INTERFACE: ==========================================================
13 SUBROUTINE KPP_CALC(
14 I bi, bj, myTime, myIter, myThid )
15
16 C !DESCRIPTION: \bv
17 C *==========================================================*
18 C | SUBROUTINE KPP_CALC |
19 C | o Compute all KPP fields defined in KPP.h |
20 C *==========================================================*
21 C | This subroutine serves as an interface between MITGCMUV |
22 C | code and NCOM 1-D routines in kpp_routines.F |
23 C *==========================================================*
24 IMPLICIT NONE
25
26 c=======================================================================
27 c
28 c written by : jan morzel, august 11, 1994
29 c modified by : jan morzel, january 25, 1995 : "dVsq" and 1d code
30 c detlef stammer, august, 1997 : for MIT GCM Classic
31 c d. menemenlis, july, 1998 : for MIT GCM UV
32 c
33 c compute vertical mixing coefficients based on the k-profile
34 c and oceanic planetary boundary layer scheme by large & mcwilliams.
35 c
36 c summary:
37 c - compute interior mixing everywhere:
38 c interior mixing gets computed at all interfaces due to constant
39 c internal wave background activity ("fkpm" and "fkph"), which
40 c is enhanced in places of static instability (local richardson
41 c number < 0).
42 c Additionally, mixing can be enhanced by adding contribution due
43 c to shear instability which is a function of the local richardson
44 c number
45 c - double diffusivity:
46 c interior mixing can be enhanced by double diffusion due to salt
47 c fingering and diffusive convection (ifdef "kmixdd").
48 c - kpp scheme in the boundary layer:
49 c
50 c a.boundary layer depth:
51 c at every gridpoint the depth of the oceanic boundary layer
52 c ("hbl") gets computed by evaluating bulk richardson numbers.
53 c b.boundary layer mixing:
54 c within the boundary layer, above hbl, vertical mixing is
55 c determined by turbulent surface fluxes, and interior mixing at
56 c the lower boundary, i.e. at hbl.
57 c
58 c this subroutine provides the interface between the MITGCM and
59 c the routine "kppmix", where boundary layer depth, vertical
60 c viscosity, vertical diffusivity, and counter gradient term (ghat)
61 c are computed slabwise.
62 c note: subroutine "kppmix" uses m-k-s units.
63 c
64 c time level:
65 c input tracer and velocity profiles are evaluated at time level
66 c tau, surface fluxes come from tau or tau-1.
67 c
68 c grid option:
69 c in this "1-grid" implementation, diffusivity and viscosity
70 c profiles are computed on the "t-grid" (by using velocity shear
71 c profiles averaged from the "u,v-grid" onto the "t-grid"; note, that
72 c the averaging includes zero values on coastal and seafloor grid
73 c points). viscosity on the "u,v-grid" is computed by averaging the
74 c "t-grid" viscosity values onto the "u,v-grid".
75 c
76 c vertical grid:
77 c mixing coefficients get evaluated at the bottom of the lowest
78 c layer, i.e., at depth zw(Nr). these values are only useful when
79 c the model ocean domain does not include the entire ocean down to
80 c the seafloor ("upperocean" setup) and allows flux through the
81 c bottom of the domain. for full-depth runs, these mixing
82 c coefficients are being zeroed out before leaving this subroutine.
83 c
84 c-------------------------------------------------------------------------
85
86 c global parameters updated by kpp_calc
87 c KPPviscAz - KPP eddy viscosity coefficient (m^2/s)
88 c KPPdiffKzT - KPP diffusion coefficient for temperature (m^2/s)
89 c KPPdiffKzS - KPP diffusion coefficient for salt and tracers (m^2/s)
90 c KPPghat - Nonlocal transport coefficient (s/m^2)
91 c KPPhbl - Boundary layer depth on "t-grid" (m)
92 c KPPfrac - Fraction of short-wave flux penetrating mixing layer
93 c KPPplumefrac- Fraction of saltplume (flux) penetrating mixing layer
94
95 c-- KPP_CALC computes vertical viscosity and diffusivity for region
96 c (-2:sNx+3,-2:sNy+3) as required by CALC_DIFFUSIVITY and requires
97 c values of uVel, vVel, surfaceForcingU, surfaceForcingV in the
98 c region (-2:sNx+4,-2:sNy+4).
99 c Hence overlap region needs to be set OLx=4, OLy=4.
100 c \ev
101
102 C !USES: ===============================================================
103 #include "SIZE.h"
104 #include "EEPARAMS.h"
105 #include "PARAMS.h"
106 #include "DYNVARS.h"
107 #include "KPP.h"
108 #include "KPP_PARAMS.h"
109 #include "FFIELDS.h"
110 #include "GRID.h"
111 #include "GAD.h"
112 #ifdef ALLOW_SALT_PLUME
113 # include "SALT_PLUME.h"
114 #endif /* ALLOW_SALT_PLUME */
115 #ifdef ALLOW_SHELFICE
116 # include "SHELFICE.h"
117 #endif /* ALLOW_SHELFICE */
118 #ifdef ALLOW_AUTODIFF_TAMC
119 # include "tamc.h"
120 # include "tamc_keys.h"
121 #else /* ALLOW_AUTODIFF_TAMC */
122 #endif /* ALLOW_AUTODIFF_TAMC */
123
124 EXTERNAL DIFFERENT_MULTIPLE
125 LOGICAL DIFFERENT_MULTIPLE
126
127 C !INPUT PARAMETERS: ===================================================
128 c Routine arguments
129 c bi, bj :: Current tile indices
130 c myTime :: Current time in simulation
131 c myIter :: Current iteration number in simulation
132 c myThid :: My Thread Id. number
133
134 INTEGER bi, bj
135 _RL myTime
136 INTEGER myIter
137 INTEGER myThid
138
139 #ifdef ALLOW_KPP
140
141 C !LOCAL VARIABLES: ====================================================
142 c Local constants
143 c minusone, p0, p5, p25, p125, p0625
144 c imin, imax, jmin, jmax - array computation indices
145
146 _RL minusone
147 parameter( minusone=-1.0)
148 _RL p0 , p5 , p25 , p125 , p0625
149 parameter( p0=0.0, p5=0.5, p25=0.25, p125=0.125, p0625=0.0625 )
150 integer imin ,imax ,jmin ,jmax
151 parameter(imin=2-OLx,imax=sNx+OLx-1,jmin=2-OLy,jmax=sNy+OLy-1)
152
153 c Local arrays and variables
154 c work? (nx,ny) - horizontal working arrays
155 c ustar (nx,ny) - surface friction velocity (m/s)
156 c bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3)
157 c bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3)
158 c boplume(nx,ny) - surface haline buoyancy forcing (m^2/s^3)
159 c shsq (nx,ny,Nr) - local velocity shear squared
160 c at interfaces for ri_iwmix (m^2/s^2)
161 c dVsq (nx,ny,Nr) - velocity shear re surface squared
162 c at grid levels for bldepth (m^2/s^2)
163 c dbloc (nx,ny,Nr) - local delta buoyancy at interfaces
164 c for ri_iwmix and bldepth (m/s^2)
165 c Ritop (nx,ny,Nr) - numerator of bulk richardson number
166 c at grid levels for bldepth
167 c vddiff (nx,ny,Nrp2,1)- vertical viscosity on "t-grid" (m^2/s)
168 c vddiff (nx,ny,Nrp2,2)- vert. diff. on next row for salt&tracers (m^2/s)
169 c vddiff (nx,ny,Nrp2,3)- vert. diff. on next row for temperature (m^2/s)
170 c ghat (nx,ny,Nr) - nonlocal transport coefficient (s/m^2)
171 c hbl (nx,ny) - mixing layer depth (m)
172 c kmtj (nx,ny) - maximum number of wet levels in each column
173 c z0 (nx,ny) - Roughness length (m)
174 c zRef (nx,ny) - Reference depth: Hmix * epsilon (m)
175 c uRef (nx,ny) - Reference zonal velocity (m/s)
176 c vRef (nx,ny) - Reference meridional velocity (m/s)
177
178 integer work1 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
179 _RL worka ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
180 _RL work2 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
181 _RL ustar ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
182 _RL bo ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
183 _RL bosol ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
184 #ifdef ALLOW_SALT_PLUME
185 _RL boplume ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
186 #endif /* ALLOW_SALT_PLUME */
187 _RL shsq ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
188 _RL dVsq ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
189 _RL dbloc ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
190 _RL Ritop ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
191 _RL vddiff( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, 0:Nrp1, mdiff )
192 _RL ghat ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
193 _RL hbl ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
194 cph(
195 _RL TTALPHA( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nrp1 )
196 _RL SSBETA ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nrp1 )
197 cph)
198 #ifdef KPP_ESTIMATE_UREF
199 _RL z0 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
200 _RL zRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
201 _RL uRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
202 _RL vRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
203 #endif /* KPP_ESTIMATE_UREF */
204
205 integer i, j, k, kp1, km1, im1, ip1, jm1, jp1
206 integer ikppkey
207
208 #ifdef KPP_ESTIMATE_UREF
209 _RL tempvar1, dBdz1, dBdz2, ustarX, ustarY
210 #endif
211
212 #ifdef ALLOW_AUTODIFF_TAMC
213 act1 = bi - myBxLo(myThid)
214 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
215 act2 = bj - myByLo(myThid)
216 max2 = myByHi(myThid) - myByLo(myThid) + 1
217 act3 = myThid - 1
218 max3 = nTx*nTy
219 act4 = ikey_dynamics - 1
220 ikppkey = (act1 + 1) + act2*max1
221 & + act3*max1*max2
222 & + act4*max1*max2*max3
223 #endif /* ALLOW_AUTODIFF_TAMC */
224 CEOP
225
226 c Check to see if new vertical mixing coefficient should be computed now?
227 IF ( DIFFERENT_MULTIPLE(kpp_freq,myTime,deltaTClock)
228 1 .OR. myTime .EQ. startTime ) THEN
229
230 c-----------------------------------------------------------------------
231 c prepare input arrays for subroutine "kppmix" to compute
232 c viscosity and diffusivity and ghat.
233 c All input arrays need to be in m-k-s units.
234 c
235 c note: for the computation of the bulk richardson number in the
236 c "bldepth" subroutine, gradients of velocity and buoyancy are
237 c required at every depth. in the case of very fine vertical grids
238 c (thickness of top layer < 2m), the surface reference depth must
239 c be set to zref=epsilon/2*zgrid(k), and the reference value
240 c of velocity and buoyancy must be computed as vertical average
241 c between the surface and 2*zref. in the case of coarse vertical
242 c grids zref is zgrid(1)/2., and the surface reference value is
243 c simply the surface value at zgrid(1).
244 c-----------------------------------------------------------------------
245
246 c------------------------------------------------------------------------
247 c density related quantities
248 c --------------------------
249 c
250 c work2 - density of surface layer (kg/m^3)
251 c dbloc - local buoyancy gradient at Nr interfaces
252 c g/rho{k+1,k+1} * [ drho{k,k+1}-drho{k+1,k+1} ] (m/s^2)
253 c dbsfc (stored in Ritop to conserve stack memory)
254 c - buoyancy difference with respect to the surface
255 c g * [ drho{1,k}/rho{1,k} - drho{k,k}/rho{k,k} ] (m/s^2)
256 c ttalpha (stored in vddiff(:,:,:,1) to conserve stack memory)
257 c - thermal expansion coefficient without 1/rho factor
258 c d(rho{k,k})/d(T(k)) (kg/m^3/C)
259 c ssbeta (stored in vddiff(:,:,:,2) to conserve stack memory)
260 c - salt expansion coefficient without 1/rho factor
261 c d(rho{k,k})/d(S(k)) (kg/m^3/PSU)
262 c------------------------------------------------------------------------
263
264 CALL STATEKPP(
265 O work2, dbloc, Ritop,
266 O TTALPHA, SSBETA,
267 I ikppkey, bi, bj, myThid )
268
269 DO k = 1, Nr
270 DO j = 1-OLy, sNy+OLy
271 DO i = 1-OLx, sNx+OLx
272 ghat(i,j,k) = dbloc(i,j,k)
273 ENDDO
274 ENDDO
275 ENDDO
276
277 #ifdef KPP_SMOOTH_DBLOC
278 c horizontally smooth dbloc with a 121 filter
279 c smooth dbloc stored in ghat to save space
280 c dbloc(k) is buoyancy gradientnote between k and k+1
281 c levels therefore k+1 mask must be used
282
283 DO k = 1, Nr-1
284 CALL SMOOTH_HORIZ (
285 I k+1, bi, bj,
286 U ghat (1-OLx,1-OLy,k),
287 I myThid )
288 ENDDO
289
290 #endif /* KPP_SMOOTH_DBLOC */
291
292 #ifdef KPP_SMOOTH_DENS
293 c horizontally smooth density related quantities with 121 filters
294 CALL SMOOTH_HORIZ (
295 I 1, bi, bj,
296 U work2,
297 I myThid )
298 DO k = 1, Nr
299 CALL SMOOTH_HORIZ (
300 I k+1, bi, bj,
301 U dbloc (1-OLx,1-OLy,k),
302 I myThid )
303 CALL SMOOTH_HORIZ (
304 I k, bi, bj,
305 U Ritop (1-OLx,1-OLy,k),
306 I myThid )
307 CALL SMOOTH_HORIZ (
308 I k, bi, bj,
309 U TTALPHA(1-OLx,1-OLy,k),
310 I myThid )
311 CALL SMOOTH_HORIZ (
312 I k, bi, bj,
313 U SSBETA(1-OLx,1-OLy,k),
314 I myThid )
315 ENDDO
316 #endif /* KPP_SMOOTH_DENS */
317
318 DO k = 1, Nr
319 km1 = max(1,k-1)
320 DO j = 1-OLy, sNy+OLy
321 DO i = 1-OLx, sNx+OLx
322
323 c zero out dbloc over land points (so that the convective
324 c part of the interior mixing can be diagnosed)
325 dbloc(i,j,k) = dbloc(i,j,k) * maskC(i,j,k,bi,bj)
326 & * maskC(i,j,km1,bi,bj)
327 ghat(i,j,k) = ghat(i,j,k) * maskC(i,j,k,bi,bj)
328 & * maskC(i,j,km1,bi,bj)
329 Ritop(i,j,k) = Ritop(i,j,k) * maskC(i,j,k,bi,bj)
330 & * maskC(i,j,km1,bi,bj)
331 if(k.eq.nzmax(i,j,bi,bj)) then
332 dbloc(i,j,k) = p0
333 ghat(i,j,k) = p0
334 Ritop(i,j,k) = p0
335 endif
336
337 c numerator of bulk richardson number on grid levels
338 c note: land and ocean bottom values need to be set to zero
339 c so that the subroutine "bldepth" works correctly
340 Ritop(i,j,k) = (zgrid(1)-zgrid(k)) * Ritop(i,j,k)
341
342 ENDDO
343 ENDDO
344 ENDDO
345
346 cph(
347 cph this avoids a single or double recomp./call of statekpp
348 CADJ store work2 = comlev1_kpp, key = ikppkey
349 #ifdef KPP_AUTODIFF_EXCESSIVE_STORE
350 CADJ store dbloc, Ritop, ghat = comlev1_kpp, key = ikppkey
351 CADJ store vddiff = comlev1_kpp, key = ikppkey
352 CADJ store TTALPHA, SSBETA = comlev1_kpp, key = ikppkey
353 #endif
354 cph)
355
356 CML#ifdef ALLOW_SHELFICE
357 CMLC For the pbl parameterisation to work underneath the ice shelves
358 CMLC it needs to know the surface (ice-ocean) fluxes. However, masking
359 CMLC and indexing problems make this part of the code not work
360 CMLC underneath the ice shelves and the following lines are only here
361 CMLC to remind me that this still needs to be sorted out.
362 CML shelfIceFac = 0. _d 0
363 CML IF ( useShelfIce ) selfIceFac = 1. _d 0
364 CML DO j = jmin, jmax
365 CML DO i = imin, imax
366 CML surfForcT = surfaceForcingT(i,j,bi,bj)
367 CML & + shelficeForcingT(i,j,bi,bj) * shelfIceFac
368 CML surfForcS = surfaceForcingS(i,j,bi,bj)
369 CML & + shelficeForcingS(i,j,bi,bj) * shelfIceFac
370 CML ENDDO
371 CML ENDDO
372 CML#endif /* ALLOW_SHELFICE */
373
374 c------------------------------------------------------------------------
375 c friction velocity, turbulent and radiative surface buoyancy forcing
376 c -------------------------------------------------------------------
377 c taux / rho = surfaceForcingU (N/m^2)
378 c tauy / rho = surfaceForcingV (N/m^2)
379 c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s)
380 c bo = - g * ( alpha*surfaceForcingT +
381 c beta *surfaceForcingS ) / rho (m^2/s^3)
382 c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3)
383 c boplume = g * (beta * saltPlumeFlux/rhoConst ) /rho (m^2/s^3)
384 c------------------------------------------------------------------------
385 c velocity shear
386 c --------------
387 c Get velocity shear squared, averaged from "u,v-grid"
388 c onto "t-grid" (in (m/s)**2):
389 c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels
390 c shsq(k)=(U(k)-U(k+1))**2+(V(k)-V(k+1))**2 at interfaces
391 c
392 c note: Vref can depend on the surface fluxes that is why we compute
393 c dVsq in the subroutine that does the surface related stuff
394 c (admittedly this is a bit messy)
395 c------------------------------------------------------------------------
396
397 CALL KPP_FORCING_SURF(
398 I work2, surfaceForcingU, surfaceForcingV,
399 I surfaceForcingT, surfaceForcingS, surfaceForcingTice,
400 I Qsw,
401 #ifdef ALLOW_SALT_PLUME
402 #ifndef SALT_PLUME_VOLUME
403 I saltPlumeFlux,
404 #endif /* SALT_PLUME_VOLUME */
405 #endif /* ALLOW_SALT_PLUME */
406 I ttalpha, ssbeta,
407 O ustar, bo, bosol,
408 #ifdef ALLOW_SALT_PLUME
409 #ifndef SALT_PLUME_VOLUME
410 O boplume,
411 #endif /* SALT_PLUME_VOLUME */
412 #endif /* ALLOW_SALT_PLUME */
413 O dVsq,
414 I ikppkey, iMin, iMax, jMin, jMax, bi, bj, myTime, myThid )
415
416 CMLcph(
417 CMLCADJ store ustar = comlev1_kpp, key = ikppkey
418 CMLcph)
419
420 c initialize arrays to zero
421 DO k = 1, Nr
422 DO j = 1-OLy, sNy+OLy
423 DO i = 1-OLx, sNx+OLx
424 shsq(i,j,k) = p0
425 ENDDO
426 ENDDO
427 ENDDO
428
429 c shsq computation
430 DO k = 1, Nrm1
431 kp1 = k + 1
432 DO j = jmin, jmax
433 jm1 = j - 1
434 jp1 = j + 1
435 DO i = imin, imax
436 im1 = i - 1
437 ip1 = i + 1
438 shsq(i,j,k) = p5 * (
439 & (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) *
440 & (uVel(i, j, k,bi,bj)-uVel(i, j, kp1,bi,bj)) +
441 & (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) *
442 & (uVel(ip1,j, k,bi,bj)-uVel(ip1,j, kp1,bi,bj)) +
443 & (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) *
444 & (vVel(i, j, k,bi,bj)-vVel(i, j, kp1,bi,bj)) +
445 & (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) *
446 & (vVel(i, jp1,k,bi,bj)-vVel(i, jp1,kp1,bi,bj)) )
447 #ifdef KPP_SMOOTH_SHSQ
448 shsq(i,j,k) = p5 * shsq(i,j,k) + p125 * (
449 & (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) *
450 & (uVel(i, jm1,k,bi,bj)-uVel(i, jm1,kp1,bi,bj)) +
451 & (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) *
452 & (uVel(ip1,jm1,k,bi,bj)-uVel(ip1,jm1,kp1,bi,bj)) +
453 & (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) *
454 & (uVel(i, jp1,k,bi,bj)-uVel(i, jp1,kp1,bi,bj)) +
455 & (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) *
456 & (uVel(ip1,jp1,k,bi,bj)-uVel(ip1,jp1,kp1,bi,bj)) +
457 & (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) *
458 & (vVel(im1,j, k,bi,bj)-vVel(im1,j, kp1,bi,bj)) +
459 & (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) *
460 & (vVel(im1,jp1,k,bi,bj)-vVel(im1,jp1,kp1,bi,bj)) +
461 & (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) *
462 & (vVel(ip1,j, k,bi,bj)-vVel(ip1,j, kp1,bi,bj)) +
463 & (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) *
464 & (vVel(ip1,jp1,k,bi,bj)-vVel(ip1,jp1,kp1,bi,bj)) )
465 #endif
466 ENDDO
467 ENDDO
468 ENDDO
469
470 cph(
471 #ifdef KPP_AUTODIFF_EXCESSIVE_STORE
472 CADJ store dvsq, shsq = comlev1_kpp, key = ikppkey
473 #endif
474 cph)
475
476 c-----------------------------------------------------------------------
477 c solve for viscosity, diffusivity, ghat, and hbl on "t-grid"
478 c-----------------------------------------------------------------------
479
480 c precompute background vertical diffusivities, which are needed for
481 c matching diffusivities at bottom of KPP PBL
482 CALL CALC_3D_DIFFUSIVITY(
483 I bi,bj,1-Olx,sNx+OLx,1-Oly,sNy+OLy,
484 I GAD_SALINITY, .FALSE., .FALSE.,
485 O KPPdiffKzS(1-Olx,1-Oly,1,bi,bj),
486 I myThid)
487 CALL CALC_3D_DIFFUSIVITY(
488 I bi,bj,1-Olx,sNx+OLx,1-Oly,sNy+OLy,
489 I GAD_TEMPERATURE, .FALSE., .FALSE.,
490 O KPPdiffKzT(1-Olx,1-Oly,1,bi,bj),
491 I myThid)
492 #ifndef EXCLUDE_KPP_DOUBLEDIFF
493 IF ( KPPuseDoubleDiff ) THEN
494 C Add the contribution of double diffusive effects (salt fingering
495 C and diffusive convection) here. It would be more logical to add
496 C them right after Ri_iwmix within kppmix, but ttalpha, ssbeta, theta
497 C and salt are not passed to kppmix and are thus not available there.
498 CALL KPP_DOUBLEDIFF(
499 I TTALPHA, SSBETA,
500 U KPPdiffKzT(1-Olx,1-Oly,1,bi,bj),
501 U KPPdiffKzS(1-Olx,1-Oly,1,bi,bj),
502 I ikppkey,1-Olx,sNx+OLx,1-Oly,sNy+OLy,bi,bj,myThid)
503 ENDIF
504 #endif /* ndef EXCLUDE_KPP_DOUBLEDIFF */
505
506 DO j = 1-OLy, sNy+OLy
507 DO i = 1-OLx, sNx+OLx
508 work1(i,j) = nzmax(i,j,bi,bj)
509 work2(i,j) = Fcori(i,j,bi,bj)
510 ENDDO
511 ENDDO
512 CALL KPPMIX (
513 I work1, shsq, dVsq, ustar
514 I , maskC(1-Olx,1-Oly,1,bi,bj)
515 I , bo, bosol
516 #ifdef ALLOW_SALT_PLUME
517 #ifndef SALT_PLUME_VOLUME
518 I , boplume, SaltPlumeDepth(1-Olx,1-Oly,bi,bj)
519 #endif /* SALT_PLUME_VOLUME */
520 #endif /* ALLOW_SALT_PLUME */
521 I , dbloc, Ritop, work2
522 I , KPPdiffKzS(1-Olx,1-Oly,1,bi,bj)
523 I , KPPdiffKzT(1-Olx,1-Oly,1,bi,bj)
524 I , ikppkey
525 O , vddiff
526 U , ghat
527 O , hbl
528 I , bi, bj, mytime, myIter, mythid )
529
530 c-----------------------------------------------------------------------
531 c zero out land values and transfer to global variables
532 c-----------------------------------------------------------------------
533
534 DO j = jmin, jmax
535 DO i = imin, imax
536 DO k = 1, Nr
537 km1 = max(1,k-1)
538 KPPviscAz(i,j,k,bi,bj) = vddiff(i,j,k-1,1) * maskC(i,j,k,bi,bj)
539 & * maskC(i,j,km1,bi,bj)
540 KPPdiffKzS(i,j,k,bi,bj)= vddiff(i,j,k-1,2) * maskC(i,j,k,bi,bj)
541 & * maskC(i,j,km1,bi,bj)
542 KPPdiffKzT(i,j,k,bi,bj)= vddiff(i,j,k-1,3) * maskC(i,j,k,bi,bj)
543 & * maskC(i,j,km1,bi,bj)
544 KPPghat(i,j,k,bi,bj) = ghat(i,j,k) * maskC(i,j,k,bi,bj)
545 & * maskC(i,j,km1,bi,bj)
546 ENDDO
547 k = 1
548 #ifdef ALLOW_SHELFICE
549 if ( useShelfIce ) k = kTopC(i,j,bi,bj)
550 #endif /* ALLOW_SHELFICE */
551 KPPhbl(i,j,bi,bj) = hbl(i,j) * maskC(i,j,k,bi,bj)
552
553 ENDDO
554 ENDDO
555
556 #ifdef KPP_SMOOTH_VISC
557 c horizontal smoothing of vertical viscosity
558 DO k = 1, Nr
559 CALL SMOOTH_HORIZ (
560 I k, bi, bj,
561 U KPPviscAz(1-OLx,1-OLy,k,bi,bj),
562 I myThid )
563 ENDDO
564 C jmc: No EXCH inside bi,bj loop !!!
565 c _EXCH_XYZ_RL(KPPviscAz , myThid )
566 #endif /* KPP_SMOOTH_VISC */
567
568 #ifdef KPP_SMOOTH_DIFF
569 c horizontal smoothing of vertical diffusivity
570 DO k = 1, Nr
571 CALL SMOOTH_HORIZ (
572 I k, bi, bj,
573 U KPPdiffKzS(1-OLx,1-OLy,k,bi,bj),
574 I myThid )
575 CALL SMOOTH_HORIZ (
576 I k, bi, bj,
577 U KPPdiffKzT(1-OLx,1-OLy,k,bi,bj),
578 I myThid )
579 ENDDO
580 #endif /* KPP_SMOOTH_DIFF */
581
582 cph(
583 cph crucial: this avoids full recomp./call of kppmix
584 CADJ store KPPhbl = comlev1_kpp, key = ikppkey
585 cph)
586
587 C Compute fraction of solar short-wave flux penetrating to
588 C the bottom of the mixing layer.
589 DO j=1-OLy,sNy+OLy
590 DO i=1-OLx,sNx+OLx
591 worka(i,j) = KPPhbl(i,j,bi,bj)
592 ENDDO
593 ENDDO
594 CALL SWFRAC(
595 I (sNx+2*OLx)*(sNy+2*OLy), minusone,
596 U worka,
597 I myTime, myIter, myThid )
598 DO j=1-OLy,sNy+OLy
599 DO i=1-OLx,sNx+OLx
600 KPPfrac(i,j,bi,bj) = worka(i,j)
601 ENDDO
602 ENDDO
603
604 #ifdef ALLOW_SALT_PLUME
605 #ifndef SALT_PLUME_VOLUME
606 C Compute fraction of saltplume (flux) penetrating to
607 C the bottom of the mixing layer.
608 IF ( useSALT_PLUME ) THEN
609 DO j=1-OLy,sNy+OLy
610 DO i=1-OLx,sNx+OLx
611 work2(i,j) = SaltPlumeDepth(i,j,bi,bj)
612 worka(i,j) = KPPhbl(i,j,bi,bj)
613 ENDDO
614 ENDDO
615 CALL SALT_PLUME_FRAC(
616 I (sNx+2*OLx)*(sNy+2*OLy), minusone, work2,
617 U worka,
618 I myTime, myIter, myThid )
619 DO j=1-OLy,sNy+OLy
620 DO i=1-OLx,sNx+OLx
621 KPPplumefrac(i,j,bi,bj) = 1. _d 0 - worka(i,j)
622 ENDDO
623 ENDDO
624 ENDIF
625 #endif /* ndef SALT_PLUME_VOLUME */
626 #endif /* ALLOW_SALT_PLUME */
627
628 ENDIF
629
630 #endif /* ALLOW_KPP */
631
632 RETURN
633 END
634
635 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
636
637 SUBROUTINE KPP_CALC_DUMMY(
638 I bi, bj, myTime, myIter, myThid )
639 C *==========================================================*
640 C | SUBROUTINE KPP_CALC_DUMMY |
641 C | o Compute all KPP fields defined in KPP.h |
642 C | o Dummy routine for TAMC
643 C *==========================================================*
644 C | This subroutine serves as an interface between MITGCMUV |
645 C | code and NCOM 1-D routines in kpp_routines.F |
646 C *==========================================================*
647 IMPLICIT NONE
648
649 #include "SIZE.h"
650 #include "EEPARAMS.h"
651 #include "PARAMS.h"
652 #include "KPP.h"
653 #include "KPP_PARAMS.h"
654 #include "GRID.h"
655 #include "GAD.h"
656
657 c Routine arguments
658 c bi, bj :: Current tile indices
659 c myTime :: Current time in simulation
660 c myIter :: Current iteration number in simulation
661 c myThid :: My Thread Id. number
662
663 INTEGER bi, bj
664 _RL myTime
665 INTEGER myIter
666 INTEGER myThid
667
668 #ifdef ALLOW_KPP
669
670 c Local constants
671 integer i, j, k
672
673 DO j=1-OLy,sNy+OLy
674 DO i=1-OLx,sNx+OLx
675 KPPhbl (i,j,bi,bj) = 1.0
676 KPPfrac(i,j,bi,bj) = 0.0
677 #ifdef ALLOW_SALT_PLUME
678 KPPplumefrac(i,j,bi,bj) = 0.0
679 #endif /* ALLOW_SALT_PLUME */
680 DO k = 1,Nr
681 KPPghat (i,j,k,bi,bj) = 0.0
682 KPPviscAz (i,j,k,bi,bj) = viscArNr(1)
683 ENDDO
684 ENDDO
685 ENDDO
686
687 CALL CALC_3D_DIFFUSIVITY(
688 I bi,bj,1-Olx,sNx+OLx,1-Oly,sNy+OLy,
689 I GAD_SALINITY, .FALSE., .FALSE.,
690 O KPPdiffKzS(1-Olx,1-Oly,1,bi,bj),
691 I myThid)
692 CALL CALC_3D_DIFFUSIVITY(
693 I bi,bj,1-Olx,sNx+OLx,1-Oly,sNy+OLy,
694 I GAD_TEMPERATURE, .FALSE., .FALSE.,
695 O KPPdiffKzT(1-Olx,1-Oly,1,bi,bj),
696 I myThid)
697
698 #endif
699 RETURN
700 END

  ViewVC Help
Powered by ViewVC 1.1.22