/[MITgcm]/MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex
ViewVC logotype

Annotation of /MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download) (as text)
Wed Nov 4 13:04:31 2009 UTC (15 years, 9 months ago) by mlosch
Branch: MAIN
Changes since 1.8: +5 -4 lines
File MIME type: application/x-tex
add another parameter value

1 mlosch 1.7 \section{Dynamics\label{app:dynamics}}
2    
3     % \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
4     % \newcommand{\vtau}{\vek{\mathbf{\tau}}}
5     For completeness we provide more details on the ice dynamics of the
6 mlosch 1.8 sea-ice model. The momentum equations are
7 mlosch 1.7 \begin{equation}
8     \label{eq:momseaice}
9     m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
10     \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
11     \end{equation}
12     where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
13     $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
14     $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
15     directions, respectively;
16     $f$ is the Coriolis parameter;
17     $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
18     respectively;
19 mlosch 1.8 $g$ is the gravity acceleration;
20 mlosch 1.7 $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
21     $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
22     height potential in response to ocean dynamics ($g\eta$), to
23     atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
24     reference density) and a term due to snow and ice loading \citep{campin08};
25     and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
26     stress tensor $\sigma_{ij}$. %
27     Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
28     terms are given by
29     \begin{align*}
30     \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
31     R_{air} (\vek{U}_{air} -\vek{u}), \\
32     \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
33     R_{ocean}(\vek{U}_{ocean}-\vek{u}),
34     \end{align*}
35     where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
36     and surface currents of the ocean, respectively; $C_{air/ocean}$ are
37     air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
38     densities; and $R_{air/ocean}$ are rotation matrices that act on the
39     wind/current vectors.
40    
41     For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
42     be related to the ice strain rate and strength by a nonlinear
43     viscous-plastic (VP) constitutive law \citep{hibler79, zhang97}:
44     \begin{equation}
45     \label{eq:vpequation}
46     \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
47     + \left[\zeta(\dot{\epsilon}_{ij},P) -
48     \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
49     - \frac{P}{2}\delta_{ij}.
50     \end{equation}
51     The ice strain rate is given by
52     \begin{equation*}
53     \dot{\epsilon}_{ij} = \frac{1}{2}\left(
54     \frac{\partial{u_{i}}}{\partial{x_{j}}} +
55     \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
56     \end{equation*}
57     The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
58     both thickness $h$ and compactness (concentration) $c$:
59     \begin{equation}
60     P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
61     \label{eq:icestrength}
62     \end{equation}
63 mlosch 1.9 with the constants $P^{*}$ and $C^{*}$; we use
64     $P^{*}=27\,500\text{~N\,m$^{-2}$}$ and $C^{*}=20$. The nonlinear bulk
65     and shear viscosities $\eta$ and $\zeta$ are functions of ice strain
66     rate invariants and ice strength such that the principal components of
67     the stress lie on an elliptical yield curve with the ratio of major to
68 mlosch 1.7 minor axis $e$ equal to $2$; they are given by:
69     \begin{align*}
70     \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
71     \zeta_{\max}\right) \\
72     \eta =& \frac{\zeta}{e^2} \\
73     \intertext{with the abbreviation}
74     \Delta = & \left[
75     \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
76     (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
77     2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
78     \right]^{\frac{1}{2}}.
79     \end{align*}
80     In the simulations of this paper, the bulk viscosities are bounded
81     above by imposing both a minimum
82     $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ and a maximum $\zeta_{\max} =
83     P_{\max}/\Delta^*$, where
84     $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress
85     tensor computation the replacement pressure $P = 2\,\Delta\zeta$
86     \citep{hibler95} is used so that the stress state always lies on the
87     elliptic yield curve by definition.
88    
89     In the so-called truncated ellipse method (experiment TEM) the shear
90     viscosity $\eta$ is capped to suppress any tensile stress
91     \citep{hibler97, geiger98}:
92     \begin{equation}
93     \label{eq:etatem}
94     \eta = \min\left(\frac{\zeta}{e^2},
95     \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
96     {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
97     +4\dot{\epsilon}_{12}^2}}\right).
98     \end{equation}
99    
100     In the current implementation, the VP-model is integrated with the
101     semi-implicit line successive over relaxation (LSOR)-solver of
102     \citet{zhang97}, which allows for long time steps that, in our case,
103     are limited by the explicit treatment of the Coriolis term. The
104     explicit treatment of the Coriolis term does not represent a severe
105     limitation because it restricts the time step to approximately the
106     same length as in the ocean model where the Coriolis term is also
107     treated explicitly.
108    
109     \citet{hunke97}'s introduced an elastic contribution to the strain
110     rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
111     the resulting elastic-viscous-plastic (EVP) and VP models are
112     identical at steady state,
113     \begin{equation}
114     \label{eq:evpequation}
115     \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
116     \frac{1}{2\eta}\sigma_{ij}
117     + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
118     + \frac{P}{4\zeta}\delta_{ij}
119     = \dot{\epsilon}_{ij}.
120     \end{equation}
121     The EVP-model uses an explicit time stepping scheme with a short
122 mlosch 1.8 time step. According to the recommendation of \citet{hunke97}, the
123 mlosch 1.7 EVP-model is stepped forward in time O(120) times within the physical
124     ocean model time step, to
125     allow for elastic waves to disappear. Because the scheme does not
126     require a matrix inversion it is fast in spite of the small internal
127 mlosch 1.8 time step and simple to implement on parallel computers
128 mlosch 1.7 \citep{hunke97}. For completeness, we repeat the equations for the
129     components of the stress tensor $\sigma_{1} =
130     \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
131     $\sigma_{12}$. Introducing the divergence $D_D =
132     \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
133     and shearing strain rates, $D_T =
134     \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
135     2\dot{\epsilon}_{12}$, respectively, and using the above
136     abbreviations, the equations~\ref{eq:evpequation} can be written as:
137     \begin{align}
138     \label{eq:evpstresstensor1}
139     \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
140     \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
141     \label{eq:evpstresstensor2}
142     \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
143     &= \frac{P}{2T\Delta} D_T \\
144     \label{eq:evpstresstensor12}
145     \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
146     &= \frac{P}{4T\Delta} D_S
147     \end{align}
148     Here, the elastic parameter $E$ is redefined in terms of a damping
149 mlosch 1.8 time scale $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
150 mlosch 1.7 $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and the external
151 mlosch 1.8 (long) time step $\Delta{t}$. We use $E_{0} = \frac{1}{3}$ which is
152 mlosch 1.7 close to value of 0.36 used by \citet{hunke01}.
153    
154 mlosch 1.3 \section{Finite-volume discretization of the stress tensor
155     divergence}
156     \label{app:discretization}
157     On an Arakawa C~grid, ice thickness and concentration and thus ice
158     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
159 mlosch 1.5 naturally defined at C-points in the center of the grid
160 mlosch 1.4 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
161     vorticity or Z-points at the bottom left corner of the cell to give
162     $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In the following,
163     the superscripts indicate location at Z or C points, distance across
164     the cell (F), along the cell edge (G), between $u$-points (U),
165     $v$-points (V), and C-points (C). The control volumes of the $u$- and
166     $v$-equations in the grid cell at indices $(i,j)$ are $A_{i,j}^{w}$
167     and $A_{i,j}^{s}$, respectively. With these definitions (which follow
168     the model code documentation at \url{http://mitgcm.org} except that
169 mlosch 1.6 vorticity or $\zeta$-points have been renamed to Z-points in order to
170     avoid confusion with the bulk viscosity $\zeta$), the strain
171 mlosch 1.5 rates are discretized as:
172 mlosch 1.4 \begin{linenomath*}\begin{align}
173 mlosch 1.3 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
174     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
175     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
176     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
177     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
178     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
179     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
180     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
181     \biggr) \\ \notag
182     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
183     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
184     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
185     &\phantom{=\frac{1}{2}\biggl(}
186     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
187     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
188     \biggr),
189 mlosch 1.4 \end{align}\end{linenomath*}
190 mlosch 1.3 so that the diagonal terms of the strain rate tensor are naturally
191     defined at C-points and the symmetric off-diagonal term at
192     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
193     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
194     ``ghost-points''; for free slip boundary conditions
195     $(\epsilon_{12})^Z=0$ on boundaries.
196    
197     For a spherical polar grid, the coefficients of the metric terms are
198     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
199     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
200     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
201     general orthogonal curvilinear grid as used in this paper, $k_{1}$ and
202     $k_{2}$ can be approximated by finite differences of the cell widths:
203     %\enlargethispage{1cm}
204 mlosch 1.4 \begin{linenomath*}\begin{align}
205 mlosch 1.3 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
206     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
207     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
208     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
209     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
210     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
211     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
212     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
213 mlosch 1.4 \end{align}\end{linenomath*}
214 heimbach 1.1
215 mlosch 1.3 The stress tensor is given by the constitutive viscous-plastic
216     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
217     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
218     ]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence
219     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
220     discretized in finite volumes. This conveniently avoids dealing with
221     further metric terms, as these are ``hidden'' in the differential cell
222     widths. For the $u$-equation ($\alpha=1$) we have:
223 mlosch 1.4 \begin{linenomath*}\begin{align}
224 mlosch 1.3 (\nabla\sigma)_{1}: \phantom{=}&
225     \frac{1}{A_{i,j}^w}
226     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
227     \\\notag
228     =& \frac{1}{A_{i,j}^w} \biggl\{
229     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
230     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
231     \biggr\} \\ \notag
232     \approx& \frac{1}{A_{i,j}^w} \biggl\{
233     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
234     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
235     \biggr\} \\ \notag
236     =& \frac{1}{A_{i,j}^w} \biggl\{
237     (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
238     \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
239     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
240     \biggr\}
241     \intertext{with}
242     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
243     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
244     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
245     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
246     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
247     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
248     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
249     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
250     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
251     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
252     %
253     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
254     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
255     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
256     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
257     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
258     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
259     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
260     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
261     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
262 mlosch 1.4 \end{align}\end{linenomath*}
263 heimbach 1.1
264 mlosch 1.3 Similarly, we have for the $v$-equation ($\alpha=2$):
265 mlosch 1.4 \begin{linenomath*}\begin{align}
266 mlosch 1.3 (\nabla\sigma)_{2}: \phantom{=}&
267     \frac{1}{A_{i,j}^s}
268     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
269     \\\notag
270     =& \frac{1}{A_{i,j}^s} \biggl\{
271     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
272     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
273     \biggr\} \\ \notag
274     \approx& \frac{1}{A_{i,j}^s} \biggl\{
275     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
276     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
277     \biggr\} \\ \notag
278     =& \frac{1}{A_{i,j}^s} \biggl\{
279     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
280     \\ \notag
281     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
282     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
283     \biggr\}
284     \intertext{with}
285     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
286     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
287     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
288     &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
289     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
290     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
291     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
292     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
293     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
294     %
295     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
296     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
297     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
298     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
299     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
300     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
301     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
302     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
303     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
304     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
305 mlosch 1.4 \end{align}\end{linenomath*}
306 heimbach 1.1
307    
308     %%% Local Variables:
309     %%% mode: latex
310 mlosch 1.3 %%% TeX-master: "ceaice_part1"
311 heimbach 1.1 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22