1 |
mlosch |
1.7 |
\section{Dynamics\label{app:dynamics}} |
2 |
|
|
|
3 |
|
|
% \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}} |
4 |
|
|
% \newcommand{\vtau}{\vek{\mathbf{\tau}}} |
5 |
|
|
For completeness we provide more details on the ice dynamics of the |
6 |
|
|
sea-ice model. The momentum equation are |
7 |
|
|
\begin{equation} |
8 |
|
|
\label{eq:momseaice} |
9 |
|
|
m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} + |
10 |
|
|
\vtau_{ocean} - m \nabla{\phi(0)} + \vek{F}, |
11 |
|
|
\end{equation} |
12 |
|
|
where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area; |
13 |
|
|
$\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector; |
14 |
|
|
$\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$ |
15 |
|
|
directions, respectively; |
16 |
|
|
$f$ is the Coriolis parameter; |
17 |
|
|
$\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses, |
18 |
|
|
respectively; |
19 |
|
|
$g$ is the gravity accelation; |
20 |
|
|
$\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height; |
21 |
|
|
$\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface |
22 |
|
|
height potential in response to ocean dynamics ($g\eta$), to |
23 |
|
|
atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a |
24 |
|
|
reference density) and a term due to snow and ice loading \citep{campin08}; |
25 |
|
|
and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice |
26 |
|
|
stress tensor $\sigma_{ij}$. % |
27 |
|
|
Advection of sea-ice momentum is neglected. The wind and ice-ocean stress |
28 |
|
|
terms are given by |
29 |
|
|
\begin{align*} |
30 |
|
|
\vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}| |
31 |
|
|
R_{air} (\vek{U}_{air} -\vek{u}), \\ |
32 |
|
|
\vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}| |
33 |
|
|
R_{ocean}(\vek{U}_{ocean}-\vek{u}), |
34 |
|
|
\end{align*} |
35 |
|
|
where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere |
36 |
|
|
and surface currents of the ocean, respectively; $C_{air/ocean}$ are |
37 |
|
|
air and ocean drag coefficients; $\rho_{air/ocean}$ are reference |
38 |
|
|
densities; and $R_{air/ocean}$ are rotation matrices that act on the |
39 |
|
|
wind/current vectors. |
40 |
|
|
|
41 |
|
|
For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can |
42 |
|
|
be related to the ice strain rate and strength by a nonlinear |
43 |
|
|
viscous-plastic (VP) constitutive law \citep{hibler79, zhang97}: |
44 |
|
|
\begin{equation} |
45 |
|
|
\label{eq:vpequation} |
46 |
|
|
\sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij} |
47 |
|
|
+ \left[\zeta(\dot{\epsilon}_{ij},P) - |
48 |
|
|
\eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij} |
49 |
|
|
- \frac{P}{2}\delta_{ij}. |
50 |
|
|
\end{equation} |
51 |
|
|
The ice strain rate is given by |
52 |
|
|
\begin{equation*} |
53 |
|
|
\dot{\epsilon}_{ij} = \frac{1}{2}\left( |
54 |
|
|
\frac{\partial{u_{i}}}{\partial{x_{j}}} + |
55 |
|
|
\frac{\partial{u_{j}}}{\partial{x_{i}}}\right). |
56 |
|
|
\end{equation*} |
57 |
|
|
The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on |
58 |
|
|
both thickness $h$ and compactness (concentration) $c$: |
59 |
|
|
\begin{equation} |
60 |
|
|
P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]}, |
61 |
|
|
\label{eq:icestrength} |
62 |
|
|
\end{equation} |
63 |
|
|
with the constants $P^{*}$ and $C^{*}=20$. The nonlinear bulk and shear |
64 |
|
|
viscosities $\eta$ and $\zeta$ are functions of ice strain rate |
65 |
|
|
invariants and ice strength such that the principal components of the |
66 |
|
|
stress lie on an elliptical yield curve with the ratio of major to |
67 |
|
|
minor axis $e$ equal to $2$; they are given by: |
68 |
|
|
\begin{align*} |
69 |
|
|
\zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})}, |
70 |
|
|
\zeta_{\max}\right) \\ |
71 |
|
|
\eta =& \frac{\zeta}{e^2} \\ |
72 |
|
|
\intertext{with the abbreviation} |
73 |
|
|
\Delta = & \left[ |
74 |
|
|
\left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right) |
75 |
|
|
(1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 + |
76 |
|
|
2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2}) |
77 |
|
|
\right]^{\frac{1}{2}}. |
78 |
|
|
\end{align*} |
79 |
|
|
In the simulations of this paper, the bulk viscosities are bounded |
80 |
|
|
above by imposing both a minimum |
81 |
|
|
$\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ and a maximum $\zeta_{\max} = |
82 |
|
|
P_{\max}/\Delta^*$, where |
83 |
|
|
$\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress |
84 |
|
|
tensor computation the replacement pressure $P = 2\,\Delta\zeta$ |
85 |
|
|
\citep{hibler95} is used so that the stress state always lies on the |
86 |
|
|
elliptic yield curve by definition. |
87 |
|
|
|
88 |
|
|
In the so-called truncated ellipse method (experiment TEM) the shear |
89 |
|
|
viscosity $\eta$ is capped to suppress any tensile stress |
90 |
|
|
\citep{hibler97, geiger98}: |
91 |
|
|
\begin{equation} |
92 |
|
|
\label{eq:etatem} |
93 |
|
|
\eta = \min\left(\frac{\zeta}{e^2}, |
94 |
|
|
\frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})} |
95 |
|
|
{\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2 |
96 |
|
|
+4\dot{\epsilon}_{12}^2}}\right). |
97 |
|
|
\end{equation} |
98 |
|
|
|
99 |
|
|
In the current implementation, the VP-model is integrated with the |
100 |
|
|
semi-implicit line successive over relaxation (LSOR)-solver of |
101 |
|
|
\citet{zhang97}, which allows for long time steps that, in our case, |
102 |
|
|
are limited by the explicit treatment of the Coriolis term. The |
103 |
|
|
explicit treatment of the Coriolis term does not represent a severe |
104 |
|
|
limitation because it restricts the time step to approximately the |
105 |
|
|
same length as in the ocean model where the Coriolis term is also |
106 |
|
|
treated explicitly. |
107 |
|
|
|
108 |
|
|
\citet{hunke97}'s introduced an elastic contribution to the strain |
109 |
|
|
rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that |
110 |
|
|
the resulting elastic-viscous-plastic (EVP) and VP models are |
111 |
|
|
identical at steady state, |
112 |
|
|
\begin{equation} |
113 |
|
|
\label{eq:evpequation} |
114 |
|
|
\frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} + |
115 |
|
|
\frac{1}{2\eta}\sigma_{ij} |
116 |
|
|
+ \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij} |
117 |
|
|
+ \frac{P}{4\zeta}\delta_{ij} |
118 |
|
|
= \dot{\epsilon}_{ij}. |
119 |
|
|
\end{equation} |
120 |
|
|
The EVP-model uses an explicit time stepping scheme with a short |
121 |
|
|
timestep. According to the recommendation of \citet{hunke97}, the |
122 |
|
|
EVP-model is stepped forward in time O(120) times within the physical |
123 |
|
|
ocean model time step, to |
124 |
|
|
allow for elastic waves to disappear. Because the scheme does not |
125 |
|
|
require a matrix inversion it is fast in spite of the small internal |
126 |
|
|
timestep and simple to implement on parallel computers |
127 |
|
|
\citep{hunke97}. For completeness, we repeat the equations for the |
128 |
|
|
components of the stress tensor $\sigma_{1} = |
129 |
|
|
\sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and |
130 |
|
|
$\sigma_{12}$. Introducing the divergence $D_D = |
131 |
|
|
\dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension |
132 |
|
|
and shearing strain rates, $D_T = |
133 |
|
|
\dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S = |
134 |
|
|
2\dot{\epsilon}_{12}$, respectively, and using the above |
135 |
|
|
abbreviations, the equations~\ref{eq:evpequation} can be written as: |
136 |
|
|
\begin{align} |
137 |
|
|
\label{eq:evpstresstensor1} |
138 |
|
|
\frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} + |
139 |
|
|
\frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\ |
140 |
|
|
\label{eq:evpstresstensor2} |
141 |
|
|
\frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T} |
142 |
|
|
&= \frac{P}{2T\Delta} D_T \\ |
143 |
|
|
\label{eq:evpstresstensor12} |
144 |
|
|
\frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T} |
145 |
|
|
&= \frac{P}{4T\Delta} D_S |
146 |
|
|
\end{align} |
147 |
|
|
Here, the elastic parameter $E$ is redefined in terms of a damping |
148 |
|
|
timescale $T$ for elastic waves \[E=\frac{\zeta}{T}.\] |
149 |
|
|
$T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and the external |
150 |
|
|
(long) timestep $\Delta{t}$. We use $E_{0} = \frac{1}{3}$ which is |
151 |
|
|
close to value of 0.36 used by \citet{hunke01}. |
152 |
|
|
|
153 |
mlosch |
1.3 |
\section{Finite-volume discretization of the stress tensor |
154 |
|
|
divergence} |
155 |
|
|
\label{app:discretization} |
156 |
|
|
On an Arakawa C~grid, ice thickness and concentration and thus ice |
157 |
|
|
strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are |
158 |
mlosch |
1.5 |
naturally defined at C-points in the center of the grid |
159 |
mlosch |
1.4 |
cell. Discretization requires only averaging of $\zeta$ and $\eta$ to |
160 |
|
|
vorticity or Z-points at the bottom left corner of the cell to give |
161 |
|
|
$\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In the following, |
162 |
|
|
the superscripts indicate location at Z or C points, distance across |
163 |
|
|
the cell (F), along the cell edge (G), between $u$-points (U), |
164 |
|
|
$v$-points (V), and C-points (C). The control volumes of the $u$- and |
165 |
|
|
$v$-equations in the grid cell at indices $(i,j)$ are $A_{i,j}^{w}$ |
166 |
|
|
and $A_{i,j}^{s}$, respectively. With these definitions (which follow |
167 |
|
|
the model code documentation at \url{http://mitgcm.org} except that |
168 |
mlosch |
1.6 |
vorticity or $\zeta$-points have been renamed to Z-points in order to |
169 |
|
|
avoid confusion with the bulk viscosity $\zeta$), the strain |
170 |
mlosch |
1.5 |
rates are discretized as: |
171 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
172 |
mlosch |
1.3 |
\dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag |
173 |
|
|
=> (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} |
174 |
|
|
+ k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\ |
175 |
|
|
\dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag |
176 |
|
|
=> (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} |
177 |
|
|
+ k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ |
178 |
|
|
\dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl( |
179 |
|
|
\partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1} |
180 |
|
|
\biggr) \\ \notag |
181 |
|
|
=> (\epsilon_{12})_{i,j}^Z &= \frac{1}{2} |
182 |
|
|
\biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V} |
183 |
|
|
+ \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag |
184 |
|
|
&\phantom{=\frac{1}{2}\biggl(} |
185 |
|
|
- k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} |
186 |
|
|
- k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} |
187 |
|
|
\biggr), |
188 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
189 |
mlosch |
1.3 |
so that the diagonal terms of the strain rate tensor are naturally |
190 |
|
|
defined at C-points and the symmetric off-diagonal term at |
191 |
|
|
Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and |
192 |
|
|
$v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via |
193 |
|
|
``ghost-points''; for free slip boundary conditions |
194 |
|
|
$(\epsilon_{12})^Z=0$ on boundaries. |
195 |
|
|
|
196 |
|
|
For a spherical polar grid, the coefficients of the metric terms are |
197 |
|
|
$k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and |
198 |
|
|
the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi |
199 |
|
|
\Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a |
200 |
|
|
general orthogonal curvilinear grid as used in this paper, $k_{1}$ and |
201 |
|
|
$k_{2}$ can be approximated by finite differences of the cell widths: |
202 |
|
|
%\enlargethispage{1cm} |
203 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
204 |
mlosch |
1.3 |
k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}} |
205 |
|
|
\frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\ |
206 |
|
|
k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}} |
207 |
|
|
\frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\ |
208 |
|
|
k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}} |
209 |
|
|
\frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\ |
210 |
|
|
k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}} |
211 |
|
|
\frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}} |
212 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
213 |
heimbach |
1.1 |
|
214 |
mlosch |
1.3 |
The stress tensor is given by the constitutive viscous-plastic |
215 |
|
|
relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} + |
216 |
|
|
[(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2 |
217 |
|
|
]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence |
218 |
|
|
$(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is |
219 |
|
|
discretized in finite volumes. This conveniently avoids dealing with |
220 |
|
|
further metric terms, as these are ``hidden'' in the differential cell |
221 |
|
|
widths. For the $u$-equation ($\alpha=1$) we have: |
222 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
223 |
mlosch |
1.3 |
(\nabla\sigma)_{1}: \phantom{=}& |
224 |
|
|
\frac{1}{A_{i,j}^w} |
225 |
|
|
\int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2 |
226 |
|
|
\\\notag |
227 |
|
|
=& \frac{1}{A_{i,j}^w} \biggl\{ |
228 |
|
|
\int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
229 |
|
|
+ \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
230 |
|
|
\biggr\} \\ \notag |
231 |
|
|
\approx& \frac{1}{A_{i,j}^w} \biggl\{ |
232 |
|
|
\Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
233 |
|
|
+ \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
234 |
|
|
\biggr\} \\ \notag |
235 |
|
|
=& \frac{1}{A_{i,j}^w} \biggl\{ |
236 |
|
|
(\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag |
237 |
|
|
\phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{} |
238 |
|
|
+ (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z |
239 |
|
|
\biggr\} |
240 |
|
|
\intertext{with} |
241 |
|
|
(\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+} |
242 |
|
|
\Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
243 |
|
|
\frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag |
244 |
|
|
&+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
245 |
|
|
k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag |
246 |
|
|
\phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
247 |
|
|
\frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag |
248 |
|
|
\phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
249 |
|
|
k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag |
250 |
|
|
\phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\ |
251 |
|
|
% |
252 |
|
|
(\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+} |
253 |
|
|
\Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
254 |
|
|
\frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag |
255 |
|
|
& + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
256 |
|
|
\frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag |
257 |
|
|
& - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
258 |
|
|
k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag |
259 |
|
|
& - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
260 |
|
|
k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} |
261 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
262 |
heimbach |
1.1 |
|
263 |
mlosch |
1.3 |
Similarly, we have for the $v$-equation ($\alpha=2$): |
264 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
265 |
mlosch |
1.3 |
(\nabla\sigma)_{2}: \phantom{=}& |
266 |
|
|
\frac{1}{A_{i,j}^s} |
267 |
|
|
\int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2 |
268 |
|
|
\\\notag |
269 |
|
|
=& \frac{1}{A_{i,j}^s} \biggl\{ |
270 |
|
|
\int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
271 |
|
|
+ \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
272 |
|
|
\biggr\} \\ \notag |
273 |
|
|
\approx& \frac{1}{A_{i,j}^s} \biggl\{ |
274 |
|
|
\Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
275 |
|
|
+ \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
276 |
|
|
\biggr\} \\ \notag |
277 |
|
|
=& \frac{1}{A_{i,j}^s} \biggl\{ |
278 |
|
|
(\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z |
279 |
|
|
\\ \notag |
280 |
|
|
\phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{} |
281 |
|
|
+ (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C |
282 |
|
|
\biggr\} |
283 |
|
|
\intertext{with} |
284 |
|
|
(\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+} |
285 |
|
|
\Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
286 |
|
|
\frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag |
287 |
|
|
&+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
288 |
|
|
\frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag |
289 |
|
|
&- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
290 |
|
|
k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag |
291 |
|
|
&- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
292 |
|
|
k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag |
293 |
|
|
% |
294 |
|
|
(\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+} |
295 |
|
|
\Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
296 |
|
|
\frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag |
297 |
|
|
&+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
298 |
|
|
k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag |
299 |
|
|
& + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
300 |
|
|
\frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag |
301 |
|
|
& + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
302 |
|
|
k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag |
303 |
|
|
& -\Delta{x}_{i,j}^{F} \frac{P}{2} |
304 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
305 |
heimbach |
1.1 |
|
306 |
|
|
|
307 |
|
|
%%% Local Variables: |
308 |
|
|
%%% mode: latex |
309 |
mlosch |
1.3 |
%%% TeX-master: "ceaice_part1" |
310 |
heimbach |
1.1 |
%%% End: |