/[MITgcm]/MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex
ViewVC logotype

Annotation of /MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download) (as text)
Tue Nov 3 16:46:22 2009 UTC (15 years, 9 months ago) by mlosch
Branch: MAIN
Changes since 1.6: +152 -0 lines
File MIME type: application/x-tex
add a new appendix to describe model dynamics in detail, not yet fully
connected to the text. If you have suggestions for shortening, you are
more than welcome to do them.

1 mlosch 1.7 \section{Dynamics\label{app:dynamics}}
2    
3     % \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
4     % \newcommand{\vtau}{\vek{\mathbf{\tau}}}
5     For completeness we provide more details on the ice dynamics of the
6     sea-ice model. The momentum equation are
7     \begin{equation}
8     \label{eq:momseaice}
9     m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
10     \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
11     \end{equation}
12     where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
13     $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
14     $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
15     directions, respectively;
16     $f$ is the Coriolis parameter;
17     $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
18     respectively;
19     $g$ is the gravity accelation;
20     $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
21     $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
22     height potential in response to ocean dynamics ($g\eta$), to
23     atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
24     reference density) and a term due to snow and ice loading \citep{campin08};
25     and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
26     stress tensor $\sigma_{ij}$. %
27     Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
28     terms are given by
29     \begin{align*}
30     \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
31     R_{air} (\vek{U}_{air} -\vek{u}), \\
32     \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
33     R_{ocean}(\vek{U}_{ocean}-\vek{u}),
34     \end{align*}
35     where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
36     and surface currents of the ocean, respectively; $C_{air/ocean}$ are
37     air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
38     densities; and $R_{air/ocean}$ are rotation matrices that act on the
39     wind/current vectors.
40    
41     For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
42     be related to the ice strain rate and strength by a nonlinear
43     viscous-plastic (VP) constitutive law \citep{hibler79, zhang97}:
44     \begin{equation}
45     \label{eq:vpequation}
46     \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
47     + \left[\zeta(\dot{\epsilon}_{ij},P) -
48     \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
49     - \frac{P}{2}\delta_{ij}.
50     \end{equation}
51     The ice strain rate is given by
52     \begin{equation*}
53     \dot{\epsilon}_{ij} = \frac{1}{2}\left(
54     \frac{\partial{u_{i}}}{\partial{x_{j}}} +
55     \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
56     \end{equation*}
57     The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
58     both thickness $h$ and compactness (concentration) $c$:
59     \begin{equation}
60     P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
61     \label{eq:icestrength}
62     \end{equation}
63     with the constants $P^{*}$ and $C^{*}=20$. The nonlinear bulk and shear
64     viscosities $\eta$ and $\zeta$ are functions of ice strain rate
65     invariants and ice strength such that the principal components of the
66     stress lie on an elliptical yield curve with the ratio of major to
67     minor axis $e$ equal to $2$; they are given by:
68     \begin{align*}
69     \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
70     \zeta_{\max}\right) \\
71     \eta =& \frac{\zeta}{e^2} \\
72     \intertext{with the abbreviation}
73     \Delta = & \left[
74     \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
75     (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
76     2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
77     \right]^{\frac{1}{2}}.
78     \end{align*}
79     In the simulations of this paper, the bulk viscosities are bounded
80     above by imposing both a minimum
81     $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ and a maximum $\zeta_{\max} =
82     P_{\max}/\Delta^*$, where
83     $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress
84     tensor computation the replacement pressure $P = 2\,\Delta\zeta$
85     \citep{hibler95} is used so that the stress state always lies on the
86     elliptic yield curve by definition.
87    
88     In the so-called truncated ellipse method (experiment TEM) the shear
89     viscosity $\eta$ is capped to suppress any tensile stress
90     \citep{hibler97, geiger98}:
91     \begin{equation}
92     \label{eq:etatem}
93     \eta = \min\left(\frac{\zeta}{e^2},
94     \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
95     {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
96     +4\dot{\epsilon}_{12}^2}}\right).
97     \end{equation}
98    
99     In the current implementation, the VP-model is integrated with the
100     semi-implicit line successive over relaxation (LSOR)-solver of
101     \citet{zhang97}, which allows for long time steps that, in our case,
102     are limited by the explicit treatment of the Coriolis term. The
103     explicit treatment of the Coriolis term does not represent a severe
104     limitation because it restricts the time step to approximately the
105     same length as in the ocean model where the Coriolis term is also
106     treated explicitly.
107    
108     \citet{hunke97}'s introduced an elastic contribution to the strain
109     rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
110     the resulting elastic-viscous-plastic (EVP) and VP models are
111     identical at steady state,
112     \begin{equation}
113     \label{eq:evpequation}
114     \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
115     \frac{1}{2\eta}\sigma_{ij}
116     + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
117     + \frac{P}{4\zeta}\delta_{ij}
118     = \dot{\epsilon}_{ij}.
119     \end{equation}
120     The EVP-model uses an explicit time stepping scheme with a short
121     timestep. According to the recommendation of \citet{hunke97}, the
122     EVP-model is stepped forward in time O(120) times within the physical
123     ocean model time step, to
124     allow for elastic waves to disappear. Because the scheme does not
125     require a matrix inversion it is fast in spite of the small internal
126     timestep and simple to implement on parallel computers
127     \citep{hunke97}. For completeness, we repeat the equations for the
128     components of the stress tensor $\sigma_{1} =
129     \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
130     $\sigma_{12}$. Introducing the divergence $D_D =
131     \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
132     and shearing strain rates, $D_T =
133     \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
134     2\dot{\epsilon}_{12}$, respectively, and using the above
135     abbreviations, the equations~\ref{eq:evpequation} can be written as:
136     \begin{align}
137     \label{eq:evpstresstensor1}
138     \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
139     \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
140     \label{eq:evpstresstensor2}
141     \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
142     &= \frac{P}{2T\Delta} D_T \\
143     \label{eq:evpstresstensor12}
144     \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
145     &= \frac{P}{4T\Delta} D_S
146     \end{align}
147     Here, the elastic parameter $E$ is redefined in terms of a damping
148     timescale $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
149     $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and the external
150     (long) timestep $\Delta{t}$. We use $E_{0} = \frac{1}{3}$ which is
151     close to value of 0.36 used by \citet{hunke01}.
152    
153 mlosch 1.3 \section{Finite-volume discretization of the stress tensor
154     divergence}
155     \label{app:discretization}
156     On an Arakawa C~grid, ice thickness and concentration and thus ice
157     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
158 mlosch 1.5 naturally defined at C-points in the center of the grid
159 mlosch 1.4 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
160     vorticity or Z-points at the bottom left corner of the cell to give
161     $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In the following,
162     the superscripts indicate location at Z or C points, distance across
163     the cell (F), along the cell edge (G), between $u$-points (U),
164     $v$-points (V), and C-points (C). The control volumes of the $u$- and
165     $v$-equations in the grid cell at indices $(i,j)$ are $A_{i,j}^{w}$
166     and $A_{i,j}^{s}$, respectively. With these definitions (which follow
167     the model code documentation at \url{http://mitgcm.org} except that
168 mlosch 1.6 vorticity or $\zeta$-points have been renamed to Z-points in order to
169     avoid confusion with the bulk viscosity $\zeta$), the strain
170 mlosch 1.5 rates are discretized as:
171 mlosch 1.4 \begin{linenomath*}\begin{align}
172 mlosch 1.3 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
173     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
174     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
175     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
176     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
177     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
178     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
179     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
180     \biggr) \\ \notag
181     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
182     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
183     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
184     &\phantom{=\frac{1}{2}\biggl(}
185     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
186     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
187     \biggr),
188 mlosch 1.4 \end{align}\end{linenomath*}
189 mlosch 1.3 so that the diagonal terms of the strain rate tensor are naturally
190     defined at C-points and the symmetric off-diagonal term at
191     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
192     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
193     ``ghost-points''; for free slip boundary conditions
194     $(\epsilon_{12})^Z=0$ on boundaries.
195    
196     For a spherical polar grid, the coefficients of the metric terms are
197     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
198     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
199     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
200     general orthogonal curvilinear grid as used in this paper, $k_{1}$ and
201     $k_{2}$ can be approximated by finite differences of the cell widths:
202     %\enlargethispage{1cm}
203 mlosch 1.4 \begin{linenomath*}\begin{align}
204 mlosch 1.3 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
205     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
206     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
207     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
208     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
209     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
210     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
211     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
212 mlosch 1.4 \end{align}\end{linenomath*}
213 heimbach 1.1
214 mlosch 1.3 The stress tensor is given by the constitutive viscous-plastic
215     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
216     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
217     ]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence
218     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
219     discretized in finite volumes. This conveniently avoids dealing with
220     further metric terms, as these are ``hidden'' in the differential cell
221     widths. For the $u$-equation ($\alpha=1$) we have:
222 mlosch 1.4 \begin{linenomath*}\begin{align}
223 mlosch 1.3 (\nabla\sigma)_{1}: \phantom{=}&
224     \frac{1}{A_{i,j}^w}
225     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
226     \\\notag
227     =& \frac{1}{A_{i,j}^w} \biggl\{
228     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
229     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
230     \biggr\} \\ \notag
231     \approx& \frac{1}{A_{i,j}^w} \biggl\{
232     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
233     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
234     \biggr\} \\ \notag
235     =& \frac{1}{A_{i,j}^w} \biggl\{
236     (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
237     \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
238     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
239     \biggr\}
240     \intertext{with}
241     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
242     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
243     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
244     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
245     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
246     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
247     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
248     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
249     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
250     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
251     %
252     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
253     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
254     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
255     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
256     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
257     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
258     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
259     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
260     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
261 mlosch 1.4 \end{align}\end{linenomath*}
262 heimbach 1.1
263 mlosch 1.3 Similarly, we have for the $v$-equation ($\alpha=2$):
264 mlosch 1.4 \begin{linenomath*}\begin{align}
265 mlosch 1.3 (\nabla\sigma)_{2}: \phantom{=}&
266     \frac{1}{A_{i,j}^s}
267     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
268     \\\notag
269     =& \frac{1}{A_{i,j}^s} \biggl\{
270     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
271     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
272     \biggr\} \\ \notag
273     \approx& \frac{1}{A_{i,j}^s} \biggl\{
274     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
275     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
276     \biggr\} \\ \notag
277     =& \frac{1}{A_{i,j}^s} \biggl\{
278     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
279     \\ \notag
280     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
281     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
282     \biggr\}
283     \intertext{with}
284     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
285     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
286     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
287     &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
288     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
289     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
290     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
291     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
292     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
293     %
294     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
295     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
296     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
297     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
298     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
299     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
300     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
301     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
302     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
303     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
304 mlosch 1.4 \end{align}\end{linenomath*}
305 heimbach 1.1
306    
307     %%% Local Variables:
308     %%% mode: latex
309 mlosch 1.3 %%% TeX-master: "ceaice_part1"
310 heimbach 1.1 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22