/[MITgcm]/MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex
ViewVC logotype

Annotation of /MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.6 - (hide annotations) (download) (as text)
Mon Jul 27 10:20:36 2009 UTC (16 years ago) by mlosch
Branch: MAIN
Changes since 1.5: +2 -1 lines
File MIME type: application/x-tex
small change to clarify notation (Z vs. \zeta)

1 mlosch 1.3 \section{Finite-volume discretization of the stress tensor
2     divergence}
3     \label{app:discretization}
4     On an Arakawa C~grid, ice thickness and concentration and thus ice
5     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
6 mlosch 1.5 naturally defined at C-points in the center of the grid
7 mlosch 1.4 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
8     vorticity or Z-points at the bottom left corner of the cell to give
9     $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In the following,
10     the superscripts indicate location at Z or C points, distance across
11     the cell (F), along the cell edge (G), between $u$-points (U),
12     $v$-points (V), and C-points (C). The control volumes of the $u$- and
13     $v$-equations in the grid cell at indices $(i,j)$ are $A_{i,j}^{w}$
14     and $A_{i,j}^{s}$, respectively. With these definitions (which follow
15     the model code documentation at \url{http://mitgcm.org} except that
16 mlosch 1.6 vorticity or $\zeta$-points have been renamed to Z-points in order to
17     avoid confusion with the bulk viscosity $\zeta$), the strain
18 mlosch 1.5 rates are discretized as:
19 mlosch 1.4 \begin{linenomath*}\begin{align}
20 mlosch 1.3 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
21     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
22     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
23     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
24     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
25     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
26     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
27     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
28     \biggr) \\ \notag
29     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
30     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
31     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
32     &\phantom{=\frac{1}{2}\biggl(}
33     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
34     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
35     \biggr),
36 mlosch 1.4 \end{align}\end{linenomath*}
37 mlosch 1.3 so that the diagonal terms of the strain rate tensor are naturally
38     defined at C-points and the symmetric off-diagonal term at
39     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
40     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
41     ``ghost-points''; for free slip boundary conditions
42     $(\epsilon_{12})^Z=0$ on boundaries.
43    
44     For a spherical polar grid, the coefficients of the metric terms are
45     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
46     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
47     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
48     general orthogonal curvilinear grid as used in this paper, $k_{1}$ and
49     $k_{2}$ can be approximated by finite differences of the cell widths:
50     %\enlargethispage{1cm}
51 mlosch 1.4 \begin{linenomath*}\begin{align}
52 mlosch 1.3 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
53     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
54     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
55     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
56     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
57     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
58     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
59     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
60 mlosch 1.4 \end{align}\end{linenomath*}
61 heimbach 1.1
62 mlosch 1.3 The stress tensor is given by the constitutive viscous-plastic
63     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
64     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
65     ]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence
66     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
67     discretized in finite volumes. This conveniently avoids dealing with
68     further metric terms, as these are ``hidden'' in the differential cell
69     widths. For the $u$-equation ($\alpha=1$) we have:
70 mlosch 1.4 \begin{linenomath*}\begin{align}
71 mlosch 1.3 (\nabla\sigma)_{1}: \phantom{=}&
72     \frac{1}{A_{i,j}^w}
73     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
74     \\\notag
75     =& \frac{1}{A_{i,j}^w} \biggl\{
76     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
77     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
78     \biggr\} \\ \notag
79     \approx& \frac{1}{A_{i,j}^w} \biggl\{
80     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
81     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
82     \biggr\} \\ \notag
83     =& \frac{1}{A_{i,j}^w} \biggl\{
84     (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
85     \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
86     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
87     \biggr\}
88     \intertext{with}
89     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
90     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
91     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
92     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
93     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
94     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
95     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
96     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
97     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
98     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
99     %
100     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
101     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
102     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
103     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
104     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
105     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
106     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
107     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
108     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
109 mlosch 1.4 \end{align}\end{linenomath*}
110 heimbach 1.1
111 mlosch 1.3 Similarly, we have for the $v$-equation ($\alpha=2$):
112 mlosch 1.4 \begin{linenomath*}\begin{align}
113 mlosch 1.3 (\nabla\sigma)_{2}: \phantom{=}&
114     \frac{1}{A_{i,j}^s}
115     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
116     \\\notag
117     =& \frac{1}{A_{i,j}^s} \biggl\{
118     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
119     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
120     \biggr\} \\ \notag
121     \approx& \frac{1}{A_{i,j}^s} \biggl\{
122     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
123     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
124     \biggr\} \\ \notag
125     =& \frac{1}{A_{i,j}^s} \biggl\{
126     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
127     \\ \notag
128     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
129     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
130     \biggr\}
131     \intertext{with}
132     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
133     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
134     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
135     &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
136     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
137     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
138     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
139     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
140     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
141     %
142     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
143     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
144     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
145     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
146     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
147     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
148     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
149     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
150     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
151     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
152 mlosch 1.4 \end{align}\end{linenomath*}
153 heimbach 1.1
154    
155     %%% Local Variables:
156     %%% mode: latex
157 mlosch 1.3 %%% TeX-master: "ceaice_part1"
158 heimbach 1.1 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22