/[MITgcm]/MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex
ViewVC logotype

Annotation of /MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Fri Jul 17 10:19:55 2009 UTC (16 years ago) by mlosch
Branch: MAIN
Changes since 1.4: +3 -3 lines
File MIME type: application/x-tex
include most suggestions of Reviewer2 and minor suggestions (spelling etc)
of Reviewer3

1 mlosch 1.3 \section{Finite-volume discretization of the stress tensor
2     divergence}
3     \label{app:discretization}
4     On an Arakawa C~grid, ice thickness and concentration and thus ice
5     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
6 mlosch 1.5 naturally defined at C-points in the center of the grid
7 mlosch 1.4 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
8     vorticity or Z-points at the bottom left corner of the cell to give
9     $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In the following,
10     the superscripts indicate location at Z or C points, distance across
11     the cell (F), along the cell edge (G), between $u$-points (U),
12     $v$-points (V), and C-points (C). The control volumes of the $u$- and
13     $v$-equations in the grid cell at indices $(i,j)$ are $A_{i,j}^{w}$
14     and $A_{i,j}^{s}$, respectively. With these definitions (which follow
15     the model code documentation at \url{http://mitgcm.org} except that
16 mlosch 1.5 vorticity or $\zeta$-points have been renamed to Z-points), the strain
17     rates are discretized as:
18 mlosch 1.4 \begin{linenomath*}\begin{align}
19 mlosch 1.3 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
20     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
21     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
22     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
23     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
24     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
25     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
26     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
27     \biggr) \\ \notag
28     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
29     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
30     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
31     &\phantom{=\frac{1}{2}\biggl(}
32     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
33     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
34     \biggr),
35 mlosch 1.4 \end{align}\end{linenomath*}
36 mlosch 1.3 so that the diagonal terms of the strain rate tensor are naturally
37     defined at C-points and the symmetric off-diagonal term at
38     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
39     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
40     ``ghost-points''; for free slip boundary conditions
41     $(\epsilon_{12})^Z=0$ on boundaries.
42    
43     For a spherical polar grid, the coefficients of the metric terms are
44     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
45     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
46     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
47     general orthogonal curvilinear grid as used in this paper, $k_{1}$ and
48     $k_{2}$ can be approximated by finite differences of the cell widths:
49     %\enlargethispage{1cm}
50 mlosch 1.4 \begin{linenomath*}\begin{align}
51 mlosch 1.3 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
52     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
53     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
54     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
55     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
56     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
57     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
58     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
59 mlosch 1.4 \end{align}\end{linenomath*}
60 heimbach 1.1
61 mlosch 1.3 The stress tensor is given by the constitutive viscous-plastic
62     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
63     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
64     ]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence
65     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
66     discretized in finite volumes. This conveniently avoids dealing with
67     further metric terms, as these are ``hidden'' in the differential cell
68     widths. For the $u$-equation ($\alpha=1$) we have:
69 mlosch 1.4 \begin{linenomath*}\begin{align}
70 mlosch 1.3 (\nabla\sigma)_{1}: \phantom{=}&
71     \frac{1}{A_{i,j}^w}
72     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
73     \\\notag
74     =& \frac{1}{A_{i,j}^w} \biggl\{
75     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
76     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
77     \biggr\} \\ \notag
78     \approx& \frac{1}{A_{i,j}^w} \biggl\{
79     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
80     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
81     \biggr\} \\ \notag
82     =& \frac{1}{A_{i,j}^w} \biggl\{
83     (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
84     \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
85     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
86     \biggr\}
87     \intertext{with}
88     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
89     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
90     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
91     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
92     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
93     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
94     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
95     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
96     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
97     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
98     %
99     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
100     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
101     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
102     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
103     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
104     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
105     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
106     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
107     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
108 mlosch 1.4 \end{align}\end{linenomath*}
109 heimbach 1.1
110 mlosch 1.3 Similarly, we have for the $v$-equation ($\alpha=2$):
111 mlosch 1.4 \begin{linenomath*}\begin{align}
112 mlosch 1.3 (\nabla\sigma)_{2}: \phantom{=}&
113     \frac{1}{A_{i,j}^s}
114     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
115     \\\notag
116     =& \frac{1}{A_{i,j}^s} \biggl\{
117     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
118     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
119     \biggr\} \\ \notag
120     \approx& \frac{1}{A_{i,j}^s} \biggl\{
121     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
122     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
123     \biggr\} \\ \notag
124     =& \frac{1}{A_{i,j}^s} \biggl\{
125     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
126     \\ \notag
127     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
128     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
129     \biggr\}
130     \intertext{with}
131     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
132     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
133     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
134     &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
135     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
136     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
137     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
138     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
139     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
140     %
141     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
142     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
143     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
144     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
145     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
146     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
147     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
148     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
149     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
150     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
151 mlosch 1.4 \end{align}\end{linenomath*}
152 heimbach 1.1
153    
154     %%% Local Variables:
155     %%% mode: latex
156 mlosch 1.3 %%% TeX-master: "ceaice_part1"
157 heimbach 1.1 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22