1 |
mlosch |
1.3 |
\section{Finite-volume discretization of the stress tensor |
2 |
|
|
divergence} |
3 |
|
|
\label{app:discretization} |
4 |
|
|
On an Arakawa C~grid, ice thickness and concentration and thus ice |
5 |
|
|
strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are |
6 |
mlosch |
1.5 |
naturally defined at C-points in the center of the grid |
7 |
mlosch |
1.4 |
cell. Discretization requires only averaging of $\zeta$ and $\eta$ to |
8 |
|
|
vorticity or Z-points at the bottom left corner of the cell to give |
9 |
|
|
$\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In the following, |
10 |
|
|
the superscripts indicate location at Z or C points, distance across |
11 |
|
|
the cell (F), along the cell edge (G), between $u$-points (U), |
12 |
|
|
$v$-points (V), and C-points (C). The control volumes of the $u$- and |
13 |
|
|
$v$-equations in the grid cell at indices $(i,j)$ are $A_{i,j}^{w}$ |
14 |
|
|
and $A_{i,j}^{s}$, respectively. With these definitions (which follow |
15 |
|
|
the model code documentation at \url{http://mitgcm.org} except that |
16 |
mlosch |
1.5 |
vorticity or $\zeta$-points have been renamed to Z-points), the strain |
17 |
|
|
rates are discretized as: |
18 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
19 |
mlosch |
1.3 |
\dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag |
20 |
|
|
=> (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} |
21 |
|
|
+ k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\ |
22 |
|
|
\dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag |
23 |
|
|
=> (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} |
24 |
|
|
+ k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ |
25 |
|
|
\dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl( |
26 |
|
|
\partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1} |
27 |
|
|
\biggr) \\ \notag |
28 |
|
|
=> (\epsilon_{12})_{i,j}^Z &= \frac{1}{2} |
29 |
|
|
\biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V} |
30 |
|
|
+ \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag |
31 |
|
|
&\phantom{=\frac{1}{2}\biggl(} |
32 |
|
|
- k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} |
33 |
|
|
- k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} |
34 |
|
|
\biggr), |
35 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
36 |
mlosch |
1.3 |
so that the diagonal terms of the strain rate tensor are naturally |
37 |
|
|
defined at C-points and the symmetric off-diagonal term at |
38 |
|
|
Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and |
39 |
|
|
$v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via |
40 |
|
|
``ghost-points''; for free slip boundary conditions |
41 |
|
|
$(\epsilon_{12})^Z=0$ on boundaries. |
42 |
|
|
|
43 |
|
|
For a spherical polar grid, the coefficients of the metric terms are |
44 |
|
|
$k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and |
45 |
|
|
the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi |
46 |
|
|
\Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a |
47 |
|
|
general orthogonal curvilinear grid as used in this paper, $k_{1}$ and |
48 |
|
|
$k_{2}$ can be approximated by finite differences of the cell widths: |
49 |
|
|
%\enlargethispage{1cm} |
50 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
51 |
mlosch |
1.3 |
k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}} |
52 |
|
|
\frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\ |
53 |
|
|
k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}} |
54 |
|
|
\frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\ |
55 |
|
|
k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}} |
56 |
|
|
\frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\ |
57 |
|
|
k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}} |
58 |
|
|
\frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}} |
59 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
60 |
heimbach |
1.1 |
|
61 |
mlosch |
1.3 |
The stress tensor is given by the constitutive viscous-plastic |
62 |
|
|
relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} + |
63 |
|
|
[(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2 |
64 |
|
|
]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence |
65 |
|
|
$(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is |
66 |
|
|
discretized in finite volumes. This conveniently avoids dealing with |
67 |
|
|
further metric terms, as these are ``hidden'' in the differential cell |
68 |
|
|
widths. For the $u$-equation ($\alpha=1$) we have: |
69 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
70 |
mlosch |
1.3 |
(\nabla\sigma)_{1}: \phantom{=}& |
71 |
|
|
\frac{1}{A_{i,j}^w} |
72 |
|
|
\int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2 |
73 |
|
|
\\\notag |
74 |
|
|
=& \frac{1}{A_{i,j}^w} \biggl\{ |
75 |
|
|
\int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
76 |
|
|
+ \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
77 |
|
|
\biggr\} \\ \notag |
78 |
|
|
\approx& \frac{1}{A_{i,j}^w} \biggl\{ |
79 |
|
|
\Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
80 |
|
|
+ \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
81 |
|
|
\biggr\} \\ \notag |
82 |
|
|
=& \frac{1}{A_{i,j}^w} \biggl\{ |
83 |
|
|
(\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag |
84 |
|
|
\phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{} |
85 |
|
|
+ (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z |
86 |
|
|
\biggr\} |
87 |
|
|
\intertext{with} |
88 |
|
|
(\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+} |
89 |
|
|
\Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
90 |
|
|
\frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag |
91 |
|
|
&+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
92 |
|
|
k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag |
93 |
|
|
\phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
94 |
|
|
\frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag |
95 |
|
|
\phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
96 |
|
|
k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag |
97 |
|
|
\phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\ |
98 |
|
|
% |
99 |
|
|
(\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+} |
100 |
|
|
\Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
101 |
|
|
\frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag |
102 |
|
|
& + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
103 |
|
|
\frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag |
104 |
|
|
& - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
105 |
|
|
k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag |
106 |
|
|
& - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j} |
107 |
|
|
k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} |
108 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
109 |
heimbach |
1.1 |
|
110 |
mlosch |
1.3 |
Similarly, we have for the $v$-equation ($\alpha=2$): |
111 |
mlosch |
1.4 |
\begin{linenomath*}\begin{align} |
112 |
mlosch |
1.3 |
(\nabla\sigma)_{2}: \phantom{=}& |
113 |
|
|
\frac{1}{A_{i,j}^s} |
114 |
|
|
\int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2 |
115 |
|
|
\\\notag |
116 |
|
|
=& \frac{1}{A_{i,j}^s} \biggl\{ |
117 |
|
|
\int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
118 |
|
|
+ \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
119 |
|
|
\biggr\} \\ \notag |
120 |
|
|
\approx& \frac{1}{A_{i,j}^s} \biggl\{ |
121 |
|
|
\Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}} |
122 |
|
|
+ \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}} |
123 |
|
|
\biggr\} \\ \notag |
124 |
|
|
=& \frac{1}{A_{i,j}^s} \biggl\{ |
125 |
|
|
(\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z |
126 |
|
|
\\ \notag |
127 |
|
|
\phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{} |
128 |
|
|
+ (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C |
129 |
|
|
\biggr\} |
130 |
|
|
\intertext{with} |
131 |
|
|
(\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+} |
132 |
|
|
\Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
133 |
|
|
\frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag |
134 |
|
|
&+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
135 |
|
|
\frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag |
136 |
|
|
&- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
137 |
|
|
k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag |
138 |
|
|
&- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j} |
139 |
|
|
k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag |
140 |
|
|
% |
141 |
|
|
(\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+} |
142 |
|
|
\Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
143 |
|
|
\frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag |
144 |
|
|
&+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j} |
145 |
|
|
k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag |
146 |
|
|
& + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
147 |
|
|
\frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag |
148 |
|
|
& + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j} |
149 |
|
|
k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag |
150 |
|
|
& -\Delta{x}_{i,j}^{F} \frac{P}{2} |
151 |
mlosch |
1.4 |
\end{align}\end{linenomath*} |
152 |
heimbach |
1.1 |
|
153 |
|
|
|
154 |
|
|
%%% Local Variables: |
155 |
|
|
%%% mode: latex |
156 |
mlosch |
1.3 |
%%% TeX-master: "ceaice_part1" |
157 |
heimbach |
1.1 |
%%% End: |