/[MITgcm]/MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex
ViewVC logotype

Annotation of /MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Wed Mar 18 15:23:23 2009 UTC (16 years, 4 months ago) by mlosch
Branch: MAIN
Changes since 1.2: +145 -300 lines
File MIME type: application/x-tex
add appendix

1 mlosch 1.3 \section{Finite-volume discretization of the stress tensor
2     divergence}
3     \label{app:discretization}
4     On an Arakawa C~grid, ice thickness and concentration and thus ice
5     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
6     naturally defined a C-points in the center of the grid
7     cell. Discretization requires only averaging of $\eta$ to vorticity or
8     Z-points at the bottom left corner of the cell to give
9     $\overline{\eta}^{Z}$. In the following, the superscripts indicate
10     location at Z or C points, distance across the cell (F), along the
11     cell edge (G), between $u$-points (U), $v$-points (V), and C-points
12     (C). The control volumes of the $u$- and $v$-equations in the grid
13     cell at indices $(i,j)$ are $A_{i,j}^{w}$ and $A_{i,j}^{s}$,
14     respectively. With these definitions, the strain rates are discretized as:
15     \begin{align}
16     \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
17     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
18     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
19     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
20     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
21     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
22     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
23     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
24     \biggr) \\ \notag
25     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
26     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
27     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
28     &\phantom{=\frac{1}{2}\biggl(}
29     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
30     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
31     \biggr),
32     \end{align}
33     so that the diagonal terms of the strain rate tensor are naturally
34     defined at C-points and the symmetric off-diagonal term at
35     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
36     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
37     ``ghost-points''; for free slip boundary conditions
38     $(\epsilon_{12})^Z=0$ on boundaries.
39    
40     For a spherical polar grid, the coefficients of the metric terms are
41     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
42     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
43     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
44     general orthogonal curvilinear grid as used in this paper, $k_{1}$ and
45     $k_{2}$ can be approximated by finite differences of the cell widths:
46     %\enlargethispage{1cm}
47     \begin{align}
48     k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
49     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
50     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
51     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
52     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
53     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
54     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
55     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
56     \end{align}
57 heimbach 1.1
58 mlosch 1.3 The stress tensor is given by the constitutive viscous-plastic
59     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
60     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
61     ]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence
62     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
63     discretized in finite volumes. This conveniently avoids dealing with
64     further metric terms, as these are ``hidden'' in the differential cell
65     widths. For the $u$-equation ($\alpha=1$) we have:
66     \begin{align}
67     (\nabla\sigma)_{1}: \phantom{=}&
68     \frac{1}{A_{i,j}^w}
69     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
70     \\\notag
71     =& \frac{1}{A_{i,j}^w} \biggl\{
72     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
73     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
74     \biggr\} \\ \notag
75     \approx& \frac{1}{A_{i,j}^w} \biggl\{
76     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
77     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
78     \biggr\} \\ \notag
79     =& \frac{1}{A_{i,j}^w} \biggl\{
80     (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
81     \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
82     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
83     \biggr\}
84     \intertext{with}
85     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
86     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
87     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
88     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
89     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
90     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
91     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
92     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
93     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
94     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
95     %
96     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
97     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
98     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
99     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
100     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
101     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
102     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
103     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
104     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
105     \end{align}
106 heimbach 1.1
107 mlosch 1.3 Similarly, we have for the $v$-equation ($\alpha=2$):
108 heimbach 1.1 \begin{align}
109 mlosch 1.3 (\nabla\sigma)_{2}: \phantom{=}&
110     \frac{1}{A_{i,j}^s}
111     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
112     \\\notag
113     =& \frac{1}{A_{i,j}^s} \biggl\{
114     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
115     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
116     \biggr\} \\ \notag
117     \approx& \frac{1}{A_{i,j}^s} \biggl\{
118     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
119     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
120     \biggr\} \\ \notag
121     =& \frac{1}{A_{i,j}^s} \biggl\{
122     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
123     \\ \notag
124     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
125     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
126     \biggr\}
127     \intertext{with}
128     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
129     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
130     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
131     &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
132     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
133     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
134     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
135     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
136     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
137     %
138     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
139     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
140     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
141     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
142     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
143     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
144     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
145     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
146     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
147     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
148 heimbach 1.1 \end{align}
149    
150    
151     %%% Local Variables:
152     %%% mode: latex
153 mlosch 1.3 %%% TeX-master: "ceaice_part1"
154 heimbach 1.1 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22