/[MITgcm]/MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex
ViewVC logotype

Annotation of /MITgcm_contrib/articles/ceaice_split_version/ceaice_part1/ceaice_appendix.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (hide annotations) (download) (as text)
Fri Jan 29 08:51:37 2010 UTC (15 years, 6 months ago) by mlosch
Branch: MAIN
CVS Tags: HEAD
Changes since 1.10: +1 -1 lines
File MIME type: application/x-tex
fix typos etc that came up in the proofs

1 mlosch 1.7 \section{Dynamics\label{app:dynamics}}
2    
3     % \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
4     % \newcommand{\vtau}{\vek{\mathbf{\tau}}}
5     For completeness we provide more details on the ice dynamics of the
6 mlosch 1.8 sea-ice model. The momentum equations are
7 mlosch 1.10 \begin{linenomath*}\begin{equation}
8 mlosch 1.7 \label{eq:momseaice}
9     m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
10     \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
11 mlosch 1.10 \end{equation}\end{linenomath*}
12 mlosch 1.7 where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
13     $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
14     $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
15     directions, respectively;
16     $f$ is the Coriolis parameter;
17     $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
18     respectively;
19 mlosch 1.8 $g$ is the gravity acceleration;
20 mlosch 1.7 $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
21     $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
22     height potential in response to ocean dynamics ($g\eta$), to
23     atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
24     reference density) and a term due to snow and ice loading \citep{campin08};
25     and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
26     stress tensor $\sigma_{ij}$. %
27     Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
28     terms are given by
29 mlosch 1.10 \begin{linenomath*}\begin{align*}
30 mlosch 1.7 \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
31     R_{air} (\vek{U}_{air} -\vek{u}), \\
32     \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
33     R_{ocean}(\vek{U}_{ocean}-\vek{u}),
34 mlosch 1.10 \end{align*}\end{linenomath*}
35 mlosch 1.7 where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
36     and surface currents of the ocean, respectively; $C_{air/ocean}$ are
37     air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
38     densities; and $R_{air/ocean}$ are rotation matrices that act on the
39 mlosch 1.10 wind/current vectors. In this paper both rotation angles are set to
40     zero.
41 mlosch 1.7
42     For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
43     be related to the ice strain rate and strength by a nonlinear
44     viscous-plastic (VP) constitutive law \citep{hibler79, zhang97}:
45 mlosch 1.10 \begin{linenomath*}\begin{equation}
46 mlosch 1.7 \label{eq:vpequation}
47     \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
48     + \left[\zeta(\dot{\epsilon}_{ij},P) -
49     \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
50     - \frac{P}{2}\delta_{ij}.
51 mlosch 1.10 \end{equation}\end{linenomath*}
52 mlosch 1.7 The ice strain rate is given by
53 mlosch 1.10 \begin{linenomath*}\begin{equation*}
54 mlosch 1.7 \dot{\epsilon}_{ij} = \frac{1}{2}\left(
55     \frac{\partial{u_{i}}}{\partial{x_{j}}} +
56     \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
57 mlosch 1.10 \end{equation*}\end{linenomath*}
58 mlosch 1.7 The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
59     both thickness $h$ and compactness (concentration) $c$:
60 mlosch 1.10 \begin{linenomath*}\begin{equation}
61 mlosch 1.7 P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
62     \label{eq:icestrength}
63 mlosch 1.10 \end{equation}\end{linenomath*}
64 mlosch 1.9 with the constants $P^{*}$ and $C^{*}$; we use
65     $P^{*}=27\,500\text{~N\,m$^{-2}$}$ and $C^{*}=20$. The nonlinear bulk
66     and shear viscosities $\eta$ and $\zeta$ are functions of ice strain
67     rate invariants and ice strength such that the principal components of
68     the stress lie on an elliptical yield curve with the ratio of major to
69 mlosch 1.7 minor axis $e$ equal to $2$; they are given by:
70     \begin{align*}
71     \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
72     \zeta_{\max}\right) \\
73     \eta =& \frac{\zeta}{e^2} \\
74     \intertext{with the abbreviation}
75     \Delta = & \left[
76     \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
77     (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
78     2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
79     \right]^{\frac{1}{2}}.
80     \end{align*}
81     In the simulations of this paper, the bulk viscosities are bounded
82     above by imposing both a minimum
83     $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ and a maximum $\zeta_{\max} =
84     P_{\max}/\Delta^*$, where
85     $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress
86     tensor computation the replacement pressure $P = 2\,\Delta\zeta$
87     \citep{hibler95} is used so that the stress state always lies on the
88     elliptic yield curve by definition.
89    
90     In the so-called truncated ellipse method (experiment TEM) the shear
91     viscosity $\eta$ is capped to suppress any tensile stress
92     \citep{hibler97, geiger98}:
93 mlosch 1.10 \begin{linenomath*}\begin{equation}
94 mlosch 1.7 \label{eq:etatem}
95     \eta = \min\left(\frac{\zeta}{e^2},
96     \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
97     {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
98     +4\dot{\epsilon}_{12}^2}}\right).
99 mlosch 1.10 \end{equation}\end{linenomath*}
100 mlosch 1.7
101     In the current implementation, the VP-model is integrated with the
102     semi-implicit line successive over relaxation (LSOR)-solver of
103     \citet{zhang97}, which allows for long time steps that, in our case,
104     are limited by the explicit treatment of the Coriolis term. The
105     explicit treatment of the Coriolis term does not represent a severe
106     limitation because it restricts the time step to approximately the
107     same length as in the ocean model where the Coriolis term is also
108     treated explicitly.
109    
110 mlosch 1.10 \citet{hunke97} introduced an elastic contribution to the strain
111 mlosch 1.7 rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
112     the resulting elastic-viscous-plastic (EVP) and VP models are
113     identical at steady state,
114 mlosch 1.10 \begin{linenomath*}\begin{equation}
115 mlosch 1.7 \label{eq:evpequation}
116     \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
117     \frac{1}{2\eta}\sigma_{ij}
118     + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
119     + \frac{P}{4\zeta}\delta_{ij}
120     = \dot{\epsilon}_{ij}.
121 mlosch 1.10 \end{equation}\end{linenomath*}
122 mlosch 1.7 The EVP-model uses an explicit time stepping scheme with a short
123 mlosch 1.8 time step. According to the recommendation of \citet{hunke97}, the
124 mlosch 1.7 EVP-model is stepped forward in time O(120) times within the physical
125     ocean model time step, to
126     allow for elastic waves to disappear. Because the scheme does not
127     require a matrix inversion it is fast in spite of the small internal
128 mlosch 1.8 time step and simple to implement on parallel computers
129 mlosch 1.7 \citep{hunke97}. For completeness, we repeat the equations for the
130     components of the stress tensor $\sigma_{1} =
131     \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
132     $\sigma_{12}$. Introducing the divergence $D_D =
133     \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
134     and shearing strain rates, $D_T =
135     \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
136     2\dot{\epsilon}_{12}$, respectively, and using the above
137     abbreviations, the equations~\ref{eq:evpequation} can be written as:
138 mlosch 1.10 \begin{linenomath*}\begin{align}
139 mlosch 1.7 \label{eq:evpstresstensor1}
140     \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
141     \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
142     \label{eq:evpstresstensor2}
143     \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
144     &= \frac{P}{2T\Delta} D_T \\
145     \label{eq:evpstresstensor12}
146     \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
147     &= \frac{P}{4T\Delta} D_S
148 mlosch 1.10 \end{align}\end{linenomath*}
149 mlosch 1.7 Here, the elastic parameter $E$ is redefined in terms of a damping
150 mlosch 1.8 time scale $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
151 mlosch 1.7 $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and the external
152 mlosch 1.10 (long) time step $\Delta{t}$. In experiment C-EVP-10 use $E_{0} =
153     \frac{1}{3}$ which is close to value of 0.36 used by
154     \citet{hunke01}. In experiment C-EVP-03 we use $E_{0} = \frac{1}{10}$
155     resulting in $T = 120\text{~s}$ for our choice of $\Delta{t}$.
156 mlosch 1.7
157 mlosch 1.3 \section{Finite-volume discretization of the stress tensor
158     divergence}
159     \label{app:discretization}
160     On an Arakawa C~grid, ice thickness and concentration and thus ice
161     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
162 mlosch 1.5 naturally defined at C-points in the center of the grid
163 mlosch 1.4 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
164     vorticity or Z-points at the bottom left corner of the cell to give
165     $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In the following,
166     the superscripts indicate location at Z or C points, distance across
167     the cell (F), along the cell edge (G), between $u$-points (U),
168     $v$-points (V), and C-points (C). The control volumes of the $u$- and
169     $v$-equations in the grid cell at indices $(i,j)$ are $A_{i,j}^{w}$
170     and $A_{i,j}^{s}$, respectively. With these definitions (which follow
171     the model code documentation at \url{http://mitgcm.org} except that
172 mlosch 1.6 vorticity or $\zeta$-points have been renamed to Z-points in order to
173     avoid confusion with the bulk viscosity $\zeta$), the strain
174 mlosch 1.5 rates are discretized as:
175 mlosch 1.4 \begin{linenomath*}\begin{align}
176 mlosch 1.3 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
177     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
178     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
179     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
180     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
181     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
182     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
183     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
184     \biggr) \\ \notag
185     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
186     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
187     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
188     &\phantom{=\frac{1}{2}\biggl(}
189     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
190     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
191     \biggr),
192 mlosch 1.4 \end{align}\end{linenomath*}
193 mlosch 1.3 so that the diagonal terms of the strain rate tensor are naturally
194     defined at C-points and the symmetric off-diagonal term at
195     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
196     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
197     ``ghost-points''; for free slip boundary conditions
198     $(\epsilon_{12})^Z=0$ on boundaries.
199    
200     For a spherical polar grid, the coefficients of the metric terms are
201     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
202     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
203     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
204     general orthogonal curvilinear grid as used in this paper, $k_{1}$ and
205     $k_{2}$ can be approximated by finite differences of the cell widths:
206     %\enlargethispage{1cm}
207 mlosch 1.4 \begin{linenomath*}\begin{align}
208 mlosch 1.3 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
209     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
210     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
211     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
212     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
213     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
214     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
215     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
216 mlosch 1.4 \end{align}\end{linenomath*}
217 heimbach 1.1
218 mlosch 1.3 The stress tensor is given by the constitutive viscous-plastic
219     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
220     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
221     ]\delta_{\alpha\beta}$ \citep{hibler79}. The stress tensor divergence
222     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
223     discretized in finite volumes. This conveniently avoids dealing with
224     further metric terms, as these are ``hidden'' in the differential cell
225     widths. For the $u$-equation ($\alpha=1$) we have:
226 mlosch 1.4 \begin{linenomath*}\begin{align}
227 mlosch 1.3 (\nabla\sigma)_{1}: \phantom{=}&
228     \frac{1}{A_{i,j}^w}
229     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
230     \\\notag
231     =& \frac{1}{A_{i,j}^w} \biggl\{
232     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
233     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
234     \biggr\} \\ \notag
235     \approx& \frac{1}{A_{i,j}^w} \biggl\{
236     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
237     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
238     \biggr\} \\ \notag
239     =& \frac{1}{A_{i,j}^w} \biggl\{
240     (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
241     \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
242     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
243     \biggr\}
244     \intertext{with}
245     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
246     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
247     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
248     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
249     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
250     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
251     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
252     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
253     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
254     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
255     %
256     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
257     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
258     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
259     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
260     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
261     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
262     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
263     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
264     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
265 mlosch 1.4 \end{align}\end{linenomath*}
266 heimbach 1.1
267 mlosch 1.3 Similarly, we have for the $v$-equation ($\alpha=2$):
268 mlosch 1.4 \begin{linenomath*}\begin{align}
269 mlosch 1.3 (\nabla\sigma)_{2}: \phantom{=}&
270     \frac{1}{A_{i,j}^s}
271     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
272     \\\notag
273     =& \frac{1}{A_{i,j}^s} \biggl\{
274     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
275     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
276     \biggr\} \\ \notag
277     \approx& \frac{1}{A_{i,j}^s} \biggl\{
278     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
279     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
280     \biggr\} \\ \notag
281     =& \frac{1}{A_{i,j}^s} \biggl\{
282     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
283     \\ \notag
284     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
285     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
286     \biggr\}
287     \intertext{with}
288     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
289     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
290     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
291     &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
292     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
293     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
294     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
295     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
296 mlosch 1.11 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\
297 mlosch 1.3 %
298     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
299     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
300     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
301     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
302     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
303     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
304     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
305     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
306     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
307     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
308 mlosch 1.4 \end{align}\end{linenomath*}
309 heimbach 1.1
310    
311     %%% Local Variables:
312     %%% mode: latex
313 mlosch 1.3 %%% TeX-master: "ceaice_part1"
314 heimbach 1.1 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22