/[MITgcm]/MITgcm_contrib/articles/ceaice/ceaice_model.tex
ViewVC logotype

Diff of /MITgcm_contrib/articles/ceaice/ceaice_model.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.11 by dimitri, Thu Aug 14 16:12:41 2008 UTC revision 1.12 by dimitri, Fri Aug 15 14:16:35 2008 UTC
# Line 24  been modified and improved: Line 24  been modified and improved:
24  The sea ice model is tightly coupled to the ocean compontent of the MITgcm  The sea ice model is tightly coupled to the ocean compontent of the MITgcm
25  \citep{mar97a}.  Heat, fresh water fluxes and surface stresses are computed  \citep{mar97a}.  Heat, fresh water fluxes and surface stresses are computed
26  from the atmospheric state and modified by the ice model at every time step.  from the atmospheric state and modified by the ice model at every time step.
27  The model equations and details of their numerical realization are summarized  
28  in the appendix. Further documentation and model code can be found at  
29    \subsection{Dynamics}
30    \label{app:dynamics}
31    
32    The momentum equation of the sea-ice model is
33    \begin{equation}
34      \label{eq:momseaice}
35      m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
36      \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
37    \end{equation}
38    where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
39    $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
40    $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
41    directions, respectively;
42    $f$ is the Coriolis parameter;
43    $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
44    respectively;
45    $g$ is the gravity accelation;
46    $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
47    $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
48    height potential in response to ocean dynamics ($g\eta$), to
49    atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
50    reference density) and a term due to snow and ice loading \citep{campin08};
51    and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
52    stress tensor $\sigma_{ij}$. %
53    Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
54    terms are given by
55    \begin{align*}
56      \vtau_{air}   = & \rho_{air}  C_{air}   |\vek{U}_{air}  -\vek{u}|
57                       R_{air}  (\vek{U}_{air}  -\vek{u}), \\
58      \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
59                       R_{ocean}(\vek{U}_{ocean}-\vek{u}), \\
60    \end{align*}
61    where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
62    and surface currents of the ocean, respectively; $C_{air/ocean}$ are
63    air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
64    densities; and $R_{air/ocean}$ are rotation matrices that act on the
65    wind/current vectors.
66    
67    For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
68    be related to the ice strain rate and strength by a nonlinear
69    viscous-plastic (VP) constitutive law \citep{hibler79, zhang97}:
70    \begin{equation}
71      \label{eq:vpequation}
72      \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
73      + \left[\zeta(\dot{\epsilon}_{ij},P) -
74        \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}  
75      - \frac{P}{2}\delta_{ij}.
76    \end{equation}
77    The ice strain rate is given by
78    \begin{equation*}
79      \dot{\epsilon}_{ij} = \frac{1}{2}\left(
80        \frac{\partial{u_{i}}}{\partial{x_{j}}} +
81        \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
82    \end{equation*}
83    The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
84    both thickness $h$ and compactness (concentration) $c$:
85    \begin{equation}
86      P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
87    \label{eq:icestrength}
88    \end{equation}
89    with the constants $P^{*}$ and $C^{*}$. The nonlinear bulk and shear
90    viscosities $\eta$ and $\zeta$ are functions of ice strain rate
91    invariants and ice strength such that the principal components of the
92    stress lie on an elliptical yield curve with the ratio of major to
93    minor axis $e$ equal to $2$; they are given by:
94    \begin{align*}
95      \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
96       \zeta_{\max}\right) \\
97      \eta =& \frac{\zeta}{e^2} \\
98      \intertext{with the abbreviation}
99      \Delta = & \left[
100        \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
101        (1+e^{-2}) +  4e^{-2}\dot{\epsilon}_{12}^2 +
102        2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
103      \right]^{\frac{1}{2}}.
104    \end{align*}
105    The bulk viscosities are bounded above by imposing both a minimum
106    $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ (for numerical reasons) and a
107    maximum $\zeta_{\max} = P_{\max}/\Delta^*$, where
108    $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress
109    tensor computation the replacement pressure $P = 2\,\Delta\zeta$
110    \citep{hibler95} is used so that the stress state always lies on the
111    elliptic yield curve by definition.
112    
113    In the so-called truncated ellipse method the shear viscosity $\eta$
114    is capped to suppress any tensile stress \citep{hibler97, geiger98}:
115    \begin{equation}
116      \label{eq:etatem}
117      \eta = \min\left(\frac{\zeta}{e^2},
118      \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
119      {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
120          +4\dot{\epsilon}_{12}^2}}\right).
121    \end{equation}
122    
123    In the current implementation, the VP-model is integrated with the
124    semi-implicit line successive over relaxation (LSOR)-solver of
125    \citet{zhang98}, which allows for long time steps that, in our case,
126    are limited by the explicit treatment of the Coriolis term. The
127    explicit treatment of the Coriolis term does not represent a severe
128    limitation because it restricts the time step to approximately the
129    same length as in the ocean model where the Coriolis term is also
130    treated explicitly.
131    
132    \citet{hunke97}'s introduced an elastic contribution to the strain
133    rate in order to regularize Eq.\refeq{vpequation} in such a way that
134    the resulting elastic-viscous-plastic (EVP) and VP models are
135    identical at steady state,
136    \begin{equation}
137      \label{eq:evpequation}
138      \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
139      \frac{1}{2\eta}\sigma_{ij}
140      + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}  
141      + \frac{P}{4\zeta}\delta_{ij}
142      = \dot{\epsilon}_{ij}.
143    \end{equation}
144    %In the EVP model, equations for the components of the stress tensor
145    %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
146    %used and compared the present sea-ice model study.
147    The EVP-model uses an explicit time stepping scheme with a short
148    timestep. According to the recommendation of \citet{hunke97}, the
149    EVP-model is stepped forward in time 120 times within the physical
150    ocean model time step (although this parameter is under debate), to
151    allow for elastic waves to disappear.  Because the scheme does not
152    require a matrix inversion it is fast in spite of the small internal
153    timestep and simple to implement on parallel computers
154    \citep{hunke97}. For completeness, we repeat the equations for the
155    components of the stress tensor $\sigma_{1} =
156    \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
157    $\sigma_{12}$. Introducing the divergence $D_D =
158    \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
159    and shearing strain rates, $D_T =
160    \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
161    2\dot{\epsilon}_{12}$, respectively, and using the above
162    abbreviations, the equations\refeq{evpequation} can be written as:
163    \begin{align}
164      \label{eq:evpstresstensor1}
165      \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
166      \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
167      \label{eq:evpstresstensor2}
168      \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
169      &= \frac{P}{2T\Delta} D_T \\
170      \label{eq:evpstresstensor12}
171      \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
172      &= \frac{P}{4T\Delta} D_S
173    \end{align}
174    Here, the elastic parameter $E$ is redefined in terms of a damping timescale
175    $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
176    $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
177    the external (long) timestep $\Delta{t}$. \citet{hunke97} recommend
178    $E_{0} = \frac{1}{3}$.
179    
180    Our discretization differs from \citet{zhang98, zhang03} in the
181    underlying grid, namely the Arakawa C-grid, but is otherwise
182    straightforward. The EVP model, in particular, is discretized
183    naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
184    center points and $\sigma_{12}$ on the corner (or vorticity) points of
185    the grid. With this choice all derivatives are discretized as central
186    differences and averaging is only involved in computing $\Delta$ and
187    $P$ at vorticity points.
188    
189    For a general curvilinear grid, one needs in principle to take metric
190    terms into account that arise in the transformation of a curvilinear
191    grid on the sphere. For now, however, we can neglect these metric
192    terms because they are very small on the \ml{[modify following
193      section3:] cubed sphere grids used in this paper; in particular,
194    only near the edges of the cubed sphere grid, we expect them to be
195    non-zero, but these edges are at approximately 35\degS\ or 35\degN\
196    which are never covered by sea-ice in our simulations.  Everywhere
197    else the coordinate system is locally nearly cartesian.}  However, for
198    last-glacial-maximum or snowball-earth-like simulations the question
199    of metric terms needs to be reconsidered.  Either, one includes these
200    terms as in \citet{zhang03}, or one finds a vector-invariant
201    formulation for the sea-ice internal stress term that does not require
202    any metric terms, as it is done in the ocean dynamics of the MITgcm
203    \citep{adcroft04:_cubed_sphere}.
204    
205    Lateral boundary conditions are naturally ``no-slip'' for B-grids, as
206    the tangential velocities points lie on the boundary. For C-grids, the
207    lateral boundary condition for tangential velocities is realized via
208    ``ghost points'', allowing alternatively no-slip or free-slip
209    conditions. In ocean models free-slip boundary conditions in
210    conjunction with piecewise-constant (``castellated'') coastlines have
211    been shown to reduce in effect to no-slip boundary conditions
212    \citep{adcroft98:_slippery_coast}; for sea-ice models the effects of
213    lateral boundary conditions have not yet been studied.
214    
215    Moving sea ice exerts a stress on the ocean which is the opposite of
216    the stress $\vtau_{ocean}$ in Eq.\refeq{momseaice}. This stess is
217    applied directly to the surface layer of the ocean model. An
218    alternative ocean stress formulation is given by \citet{hibler87}.
219    Rather than applying $\vtau_{ocean}$ directly, the stress is derived
220    from integrating over the ice thickness to the bottom of the oceanic
221    surface layer. In the resulting equation for the \emph{combined}
222    ocean-ice momentum, the interfacial stress cancels and the total
223    stress appears as the sum of windstress and divergence of internal ice
224    stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
225    Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
226    now the velocity in the surface layer of the ocean that is used to
227    advect tracers, is really an average over the ocean surface
228    velocity and the ice velocity leading to an inconsistency as the ice
229    temperature and salinity are different from the oceanic variables.
230    
231    %\subparagraph{boundary conditions: no-slip, free-slip, half-slip}
232    %\begin{itemize}
233    %\item transition from existing B-Grid to C-Grid
234    %\item boundary conditions: no-slip, free-slip, half-slip
235    %\item fancy (multi dimensional) advection schemes
236    %\item VP vs.\ EVP \citep{hunke97}
237    %\item ocean stress formulation \citep{hibler87}
238    %\end{itemize}
239    
240    \subsection{Thermodynamics}
241    \label{app:thermodynamics}
242    
243    In its original formulation the sea ice model \citep{menemenlis05}
244    uses simple thermodynamics following the appendix of
245    \citet{semtner76}. This formulation does not allow storage of heat,
246    that is, the heat capacity of ice is zero. Upward conductive heat flux
247    is parameterized assuming a linear temperature profile and together
248    with a constant ice conductivity. It is expressed as
249    $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
250    thickness, and $T_{w}-T_{0}$ the difference between water and ice
251    surface temperatures. This type of model is often refered to as a
252    ``zero-layer'' model. The surface heat flux is computed in a similar
253    way to that of \citet{parkinson79} and \citet{manabe79}.
254    
255    The conductive heat flux depends strongly on the ice thickness $h$.
256    However, the ice thickness in the model represents a mean over a
257    potentially very heterogeneous thickness distribution.  In order to
258    parameterize a sub-grid scale distribution for heat flux
259    computations, the mean ice thickness $h$ is split into seven thickness
260    categories $H_{n}$ that are equally distributed between $2h$ and a
261    minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
262    \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
263    thickness category is area-averaged to give the total heat flux
264    \citep{hibler84}.
265    
266    \ml{[This is Ian Fenty's work and we may want to remove this paragraph
267      from the paper]: %
268    The atmospheric heat flux is balanced by an oceanic heat flux from
269    below.  The oceanic flux is proportional to
270    $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
271    the density and heat capacity of sea water and $T_{fr}$ is the local
272    freezing point temperature that is a function of salinity. Contrary to
273    \citet{menemenlis05}, this flux is not assumed to instantaneously melt
274    or create ice, but a time scale of three days is used to relax $T_{w}$
275    to the freezing point.}
276    %
277    The parameterization of lateral and vertical growth of sea ice follows
278    that of \citet{hibler79, hibler80}.
279    
280    On top of the ice there is a layer of snow that modifies the heat flux
281    and the albedo \citep{zhang98}. Snow modifies the effective
282    conductivity according to
283    \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
284    where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
285    If enough snow accumulates so that its weight submerges the ice and
286    the snow is flooded, a simple mass conserving parameterization of
287    snowice formation (a flood-freeze algorithm following Archimedes'
288    principle) turns snow into ice until the ice surface is back at $z=0$
289    \citep{leppaeranta83}.
290    
291    Effective ice thickness (ice volume per unit area,
292    $c\cdot{h}$), concentration $c$ and effective snow thickness
293    ($c\cdot{h}_{s}$) are advected by ice velocities:
294    \begin{equation}
295      \label{eq:advection}
296      \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
297      \Gamma_{X} + D_{X}
298    \end{equation}
299    where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
300    diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
301    %
302    From the various advection scheme that are available in the MITgcm
303    \citep{mitgcm02}, we choose flux-limited schemes
304    \citep[multidimensional 2nd and 3rd-order advection scheme with flux
305    limiter][]{roe85, hundsdorfer94} to preserve sharp gradients and edges
306    that are typical of sea ice distributions and to rule out unphysical
307    over- and undershoots (negative thickness or concentration). These
308    scheme conserve volume and horizontal area and are unconditionally
309    stable, so that we can set $D_{X}=0$.  \ml{[do we need to proove that?
310      can we proove that? citation?]}
311    
312    There is considerable doubt about the reliability of such a simple
313    thermodynamic model---\citet{semtner84} found significant errors in
314    phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
315    such models---, so that today many sea ice models employ more complex
316    thermodynamics. A popular thermodynamics model of \citet{winton00} is
317    based on the 3-layer model of \citet{semtner76} and treats brine
318    content by means of enthalphy conservation. This model requires in
319    addition to ice-thickness and compactness (fractional area) additional
320    state variables to be advected by ice velocities, namely enthalphy of
321    the two ice layers and the thickness of the overlying snow layer.
322    \ml{[Jean-Michel, your turf: ]Care must be taken in advecting these
323      quantities in order to ensure conservation of enthalphy. Currently
324      this can only be accomplished with a 2nd-order advection scheme with
325      flux limiter \citep{roe85}.}
326    
327    Further documentation and model code can be found at
328  \url{http://mitgcm.org}.  \url{http://mitgcm.org}.
329    
330    
331  %\subsection{C-grid}  %\subsection{C-grid}
332  %\begin{itemize}  %\begin{itemize}
333  %\item no-slip vs. free-slip for both lsr and evp;  %\item no-slip vs. free-slip for both lsr and evp;

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.12

  ViewVC Help
Powered by ViewVC 1.1.22