/[MITgcm]/MITgcm_contrib/articles/ceaice/ceaice_model.tex
ViewVC logotype

Diff of /MITgcm_contrib/articles/ceaice/ceaice_model.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by mlosch, Thu Feb 28 20:09:23 2008 UTC revision 1.6 by mlosch, Fri Feb 29 16:47:45 2008 UTC
# Line 12  been modified and improved: Line 12  been modified and improved:
12    C-grid variants are available; the C-grid code allows for no-slip    C-grid variants are available; the C-grid code allows for no-slip
13    and free-slip lateral boundary conditions;    and free-slip lateral boundary conditions;
14  \item two different solution methods for solving the nonlinear  \item two different solution methods for solving the nonlinear
15    momentum equations have been adopted: LSOR \citep{zha97}, EVP    momentum equations have been adopted: LSOR \citep{zhang97}, EVP
16    \citep{hunke97};    \citep{hunke97};
17  \item ice-ocean stress can be formulated as in \citet{hibler87};  \item ice-ocean stress can be formulated as in \citet{hibler87};
18  \item ice variables are advected by sophisticated advection schemes;  \item ice variables are advected by sophisticated advection schemes;
# Line 283  the ice surface is back at $z=0$ \citep{ Line 283  the ice surface is back at $z=0$ \citep{
283  Effective ich thickness (ice volume per unit area,  Effective ich thickness (ice volume per unit area,
284  $c\cdot{h}$), concentration $c$ and effective snow thickness  $c\cdot{h}$), concentration $c$ and effective snow thickness
285  ($c\cdot{h}_{s}$) are advected by ice velocities:  ($c\cdot{h}_{s}$) are advected by ice velocities:
286  \begin{align}  \begin{equation}
287    \frac{\partial(c\,{h})}{\partial{t}} &= - \nabla\left(\vek{u}\,c\,{h}\right) +    \label{eq:advection}
288    \Gamma_{h} + D_{h} \\    \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
289    \frac{\partial{c}}{\partial{t}} &= - \nabla\left(\vek{u}\,c\right) +    \Gamma_{X} + D_{X}
290    \Gamma_{c} + D_{c} \\  \end{equation}
   \frac{\partial(c\,{h}_{s})}{\partial{t}} &= - \nabla\left(\vek{u}\,c\,{h}_{s}\right) +  
   \Gamma_{h_{s}} + D_{h_{s}}  
 \end{align}  
291  where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the  where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
292  diffusive terms for quantity $X=h, c, h_{s}$.  diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
293  %  %
294  From the various advection scheme that are available in the MITgcm  From the various advection scheme that are available in the MITgcm
295  \citep{mitgcm02}, we choose flux-limited schemes  \citep{mitgcm02}, we choose flux-limited schemes

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.6

  ViewVC Help
Powered by ViewVC 1.1.22