/[MITgcm]/MITgcm_contrib/articles/ceaice/ceaice.tex
ViewVC logotype

Contents of /MITgcm_contrib/articles/ceaice/ceaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.24 - (show annotations) (download) (as text)
Fri Aug 15 14:16:35 2008 UTC (16 years, 11 months ago) by dimitri
Branch: MAIN
CVS Tags: end_of_ceaice_monolith, HEAD
Changes since 1.23: +4 -4 lines
File MIME type: application/x-tex
Removing ceaice_adjoint.tex from ceaice.tex.  ceaice_adjoint.tex will become
basis for a second paper.  Also I suggest that there should be no appendix.
Instead a minimal description of model dynamics should be included in main
body of text but with references for everything that is already published,
including equations, etc., and only pointing out changes.  As a first step I
have brought back all the appendix to ceaice_model, then we can start cutting.

1 % $Header: /u/gcmpack/MITgcm_contrib/articles/ceaice/ceaice.tex,v 1.23 2008/08/14 16:12:41 dimitri Exp $
2 % $Name: $
3 \documentclass[12pt]{article}
4
5 \usepackage[]{graphicx}
6 %\usepackage[draft]{graphicx}
7 \usepackage{subfigure}
8
9 \usepackage[round,comma]{natbib}
10 \bibliographystyle{bib/agu04}
11
12 \usepackage{amsmath,amssymb}
13 \newcommand\bmmax{10} \newcommand\hmmax{10}
14 \usepackage{bm}
15
16 \usepackage{url}
17
18 % math abbreviations
19 \newcommand{\vek}[1]{\ensuremath{\mathbf{#1}}}
20 \newcommand{\mat}[1]{\ensuremath{\mathbf{#1}}}
21 \newcommand{\vtau}{\bm{{\tau}}}
22
23 \newcommand{\degree}{\ensuremath{^\circ}}
24 \newcommand{\degC}{\,\ensuremath{\degree}C}
25 \newcommand{\degE}{\ensuremath{\degree}\,E}
26 \newcommand{\degS}{\ensuremath{\degree}\,S}
27 \newcommand{\degN}{\ensuremath{\degree}\,N}
28 \newcommand{\degW}{\ensuremath{\degree}\,W}
29
30 % cross reference scheme
31 \newcommand{\reffig}[1]{Figure~\ref{fig:#1}}
32 \newcommand{\reftab}[1]{Table~\ref{tab:#1}}
33 \newcommand{\refapp}[1]{Appendix~\ref{app:#1}}
34 \newcommand{\refsec}[1]{Section~\ref{sec:#1}}
35 \newcommand{\refeq}[1]{\,(\ref{eq:#1})}
36 \newcommand{\refeqs}[2]{\,(\ref{eq:#1})--(\ref{eq:#2})}
37
38 \newlength{\stdfigwidth}\setlength{\stdfigwidth}{20pc}
39 %\newlength{\stdfigwidth}\setlength{\stdfigwidth}{\columnwidth}
40 \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}
41 %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}
42 \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}
43 \newcommand{\fpath}{figs}
44
45 % commenting scheme
46 \newcommand{\ml}[1]{\textsf{\slshape #1}}
47
48 \title{A Dynamic-Thermodynamic Sea Ice Model on an Arakawa C-Grid
49 for Ocean Climate Estimation and Sensitivity Studies}
50
51 %Alternative title suggested by Chris Hill:
52 %\title{A Sea Ice Model Designed for Ocean State Estimation and its
53 % Application to Studying Sea Ice Model Dynamics in the Canadian Arctic
54 % Archipelago}
55
56 \author{Martin Losch, Dimitris Menemenlis, Patrick Heimbach, \\
57 Jean-Michel Campin, and Chris Hill}
58 \begin{document}
59
60 \maketitle
61
62 \input{ceaice_abstract.tex}
63
64 \input{ceaice_intro.tex}
65
66 \input{ceaice_model.tex}
67
68 \input{ceaice_forward.tex}
69
70 %\input{ceaice_adjoint.tex}
71
72 \input{ceaice_concl.tex}
73
74 %\appendix
75 %\input{ceaice_appendix.tex}
76
77 \paragraph{Acknowledgements}
78 We thank Jinlun Zhang for providing the original B-grid code and many
79 helpful discussions. ML thanks Elizabeth Hunke for multiple explanations.
80
81 This work is a contribution to Estimating the Circulation and Climate of the
82 Ocean, Phase II (ECCO2). The ECCO2 project (http://ecco2.org/) is sponsored
83 by the NASA Modeling Analysis and Prediction (MAP) program. D. Menemenlis
84 carried out this work at the Jet Propulsion Laboratory, California Institute
85 of Technology under contract with the National Aeronautics and Space
86 Administration.
87
88 \bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram,bib/mit_biblio}
89
90 \end{document}
91
92 %%% Local Variables:
93 %%% mode: latex
94 %%% TeX-master: t
95 %%% End:
96
97
98 A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
99 Estimation on an Arakawa C-Grid
100
101 Introduction
102
103 Ice Model:
104 Dynamics formulation.
105 B-C, LSR, EVP, no-slip, slip
106 parallellization
107 Thermodynamics formulation.
108 0-layer Hibler salinity + snow
109 3-layer Winton
110
111 Idealized tests
112 Funnel Experiments
113 Downstream Island tests
114 B-grid LSR no-slip
115 C-grid LSR no-slip
116 C-grid LSR slip
117 C-grid EVP no-slip
118 C-grid EVP slip
119
120 Arctic Setup
121 Configuration
122 OBCS from cube
123 forcing
124 1/2 and full resolution
125 with a few JFM figs from C-grid LSR no slip
126 ice transport through Canadian Archipelago
127 thickness distribution
128 ice velocity and transport
129
130 Arctic forward sensitivity experiments
131 B-grid LSR no-slip
132 C-grid LSR no-slip
133 C-grid LSR slip
134 C-grid EVP no-slip
135 C-grid EVP slip
136 C-grid LSR no-slip + Winton
137 speed-performance-accuracy (small)
138 ice transport through Canadian Archipelago differences
139 thickness distribution differences
140 ice velocity and transport differences
141
142 Adjoint sensitivity experiment on 1/2-res setup
143 Sensitivity of sea ice volume flow through Fram Strait
144 *** Sensitivity of sea ice volume flow through Canadian Archipelago
145
146 Summary and conluding remarks

  ViewVC Help
Powered by ViewVC 1.1.22