1 |
% $Header: /u/gcmpack/MITgcm_contrib/articles/ceaice/ceaice.tex,v 1.23 2008/08/14 16:12:41 dimitri Exp $ |
2 |
% $Name: $ |
3 |
\documentclass[12pt]{article} |
4 |
|
5 |
\usepackage[]{graphicx} |
6 |
%\usepackage[draft]{graphicx} |
7 |
\usepackage{subfigure} |
8 |
|
9 |
\usepackage[round,comma]{natbib} |
10 |
\bibliographystyle{bib/agu04} |
11 |
|
12 |
\usepackage{amsmath,amssymb} |
13 |
\newcommand\bmmax{10} \newcommand\hmmax{10} |
14 |
\usepackage{bm} |
15 |
|
16 |
\usepackage{url} |
17 |
|
18 |
% math abbreviations |
19 |
\newcommand{\vek}[1]{\ensuremath{\mathbf{#1}}} |
20 |
\newcommand{\mat}[1]{\ensuremath{\mathbf{#1}}} |
21 |
\newcommand{\vtau}{\bm{{\tau}}} |
22 |
|
23 |
\newcommand{\degree}{\ensuremath{^\circ}} |
24 |
\newcommand{\degC}{\,\ensuremath{\degree}C} |
25 |
\newcommand{\degE}{\ensuremath{\degree}\,E} |
26 |
\newcommand{\degS}{\ensuremath{\degree}\,S} |
27 |
\newcommand{\degN}{\ensuremath{\degree}\,N} |
28 |
\newcommand{\degW}{\ensuremath{\degree}\,W} |
29 |
|
30 |
% cross reference scheme |
31 |
\newcommand{\reffig}[1]{Figure~\ref{fig:#1}} |
32 |
\newcommand{\reftab}[1]{Table~\ref{tab:#1}} |
33 |
\newcommand{\refapp}[1]{Appendix~\ref{app:#1}} |
34 |
\newcommand{\refsec}[1]{Section~\ref{sec:#1}} |
35 |
\newcommand{\refeq}[1]{\,(\ref{eq:#1})} |
36 |
\newcommand{\refeqs}[2]{\,(\ref{eq:#1})--(\ref{eq:#2})} |
37 |
|
38 |
\newlength{\stdfigwidth}\setlength{\stdfigwidth}{20pc} |
39 |
%\newlength{\stdfigwidth}\setlength{\stdfigwidth}{\columnwidth} |
40 |
\newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc} |
41 |
%\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc} |
42 |
\newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth} |
43 |
\newcommand{\fpath}{figs} |
44 |
|
45 |
% commenting scheme |
46 |
\newcommand{\ml}[1]{\textsf{\slshape #1}} |
47 |
|
48 |
\title{A Dynamic-Thermodynamic Sea Ice Model on an Arakawa C-Grid |
49 |
for Ocean Climate Estimation and Sensitivity Studies} |
50 |
|
51 |
%Alternative title suggested by Chris Hill: |
52 |
%\title{A Sea Ice Model Designed for Ocean State Estimation and its |
53 |
% Application to Studying Sea Ice Model Dynamics in the Canadian Arctic |
54 |
% Archipelago} |
55 |
|
56 |
\author{Martin Losch, Dimitris Menemenlis, Patrick Heimbach, \\ |
57 |
Jean-Michel Campin, and Chris Hill} |
58 |
\begin{document} |
59 |
|
60 |
\maketitle |
61 |
|
62 |
\input{ceaice_abstract.tex} |
63 |
|
64 |
\input{ceaice_intro.tex} |
65 |
|
66 |
\input{ceaice_model.tex} |
67 |
|
68 |
\input{ceaice_forward.tex} |
69 |
|
70 |
%\input{ceaice_adjoint.tex} |
71 |
|
72 |
\input{ceaice_concl.tex} |
73 |
|
74 |
%\appendix |
75 |
%\input{ceaice_appendix.tex} |
76 |
|
77 |
\paragraph{Acknowledgements} |
78 |
We thank Jinlun Zhang for providing the original B-grid code and many |
79 |
helpful discussions. ML thanks Elizabeth Hunke for multiple explanations. |
80 |
|
81 |
This work is a contribution to Estimating the Circulation and Climate of the |
82 |
Ocean, Phase II (ECCO2). The ECCO2 project (http://ecco2.org/) is sponsored |
83 |
by the NASA Modeling Analysis and Prediction (MAP) program. D. Menemenlis |
84 |
carried out this work at the Jet Propulsion Laboratory, California Institute |
85 |
of Technology under contract with the National Aeronautics and Space |
86 |
Administration. |
87 |
|
88 |
\bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram,bib/mit_biblio} |
89 |
|
90 |
\end{document} |
91 |
|
92 |
%%% Local Variables: |
93 |
%%% mode: latex |
94 |
%%% TeX-master: t |
95 |
%%% End: |
96 |
|
97 |
|
98 |
A Dynamic-Thermodynamic Sea ice Model for Ocean Climate |
99 |
Estimation on an Arakawa C-Grid |
100 |
|
101 |
Introduction |
102 |
|
103 |
Ice Model: |
104 |
Dynamics formulation. |
105 |
B-C, LSR, EVP, no-slip, slip |
106 |
parallellization |
107 |
Thermodynamics formulation. |
108 |
0-layer Hibler salinity + snow |
109 |
3-layer Winton |
110 |
|
111 |
Idealized tests |
112 |
Funnel Experiments |
113 |
Downstream Island tests |
114 |
B-grid LSR no-slip |
115 |
C-grid LSR no-slip |
116 |
C-grid LSR slip |
117 |
C-grid EVP no-slip |
118 |
C-grid EVP slip |
119 |
|
120 |
Arctic Setup |
121 |
Configuration |
122 |
OBCS from cube |
123 |
forcing |
124 |
1/2 and full resolution |
125 |
with a few JFM figs from C-grid LSR no slip |
126 |
ice transport through Canadian Archipelago |
127 |
thickness distribution |
128 |
ice velocity and transport |
129 |
|
130 |
Arctic forward sensitivity experiments |
131 |
B-grid LSR no-slip |
132 |
C-grid LSR no-slip |
133 |
C-grid LSR slip |
134 |
C-grid EVP no-slip |
135 |
C-grid EVP slip |
136 |
C-grid LSR no-slip + Winton |
137 |
speed-performance-accuracy (small) |
138 |
ice transport through Canadian Archipelago differences |
139 |
thickness distribution differences |
140 |
ice velocity and transport differences |
141 |
|
142 |
Adjoint sensitivity experiment on 1/2-res setup |
143 |
Sensitivity of sea ice volume flow through Fram Strait |
144 |
*** Sensitivity of sea ice volume flow through Canadian Archipelago |
145 |
|
146 |
Summary and conluding remarks |