1 |
% $Header: /u/gcmpack/MITgcm_contrib/articles/ceaice/ceaice.tex,v 1.19 2008/02/28 16:34:56 mlosch Exp $ |
2 |
% $Name: $ |
3 |
\documentclass[12pt]{article} |
4 |
|
5 |
\usepackage[]{graphicx} |
6 |
\usepackage{subfigure} |
7 |
|
8 |
\usepackage[round,comma]{natbib} |
9 |
\bibliographystyle{bib/agu04} |
10 |
|
11 |
\usepackage{amsmath,amssymb} |
12 |
\newcommand\bmmax{10} \newcommand\hmmax{10} |
13 |
\usepackage{bm} |
14 |
|
15 |
\usepackage{url} |
16 |
|
17 |
% math abbreviations |
18 |
\newcommand{\vek}[1]{\ensuremath{\mathbf{#1}}} |
19 |
\newcommand{\mat}[1]{\ensuremath{\mathbf{#1}}} |
20 |
\newcommand{\vtau}{\bm{{\tau}}} |
21 |
|
22 |
\newcommand{\degree}{\ensuremath{^\circ}} |
23 |
\newcommand{\degC}{\,\ensuremath{\degree}C} |
24 |
\newcommand{\degE}{\ensuremath{\degree}\,E} |
25 |
\newcommand{\degS}{\ensuremath{\degree}\,S} |
26 |
\newcommand{\degN}{\ensuremath{\degree}\,N} |
27 |
\newcommand{\degW}{\ensuremath{\degree}\,W} |
28 |
|
29 |
% cross reference scheme |
30 |
\newcommand{\reffig}[1]{Figure~\ref{fig:#1}} |
31 |
\newcommand{\reftab}[1]{Table~\ref{tab:#1}} |
32 |
\newcommand{\refapp}[1]{Appendix~\ref{app:#1}} |
33 |
\newcommand{\refsec}[1]{Section~\ref{sec:#1}} |
34 |
\newcommand{\refeq}[1]{\,(\ref{eq:#1})} |
35 |
\newcommand{\refeqs}[2]{\,(\ref{eq:#1})--(\ref{eq:#2})} |
36 |
|
37 |
\newlength{\stdfigwidth}\setlength{\stdfigwidth}{20pc} |
38 |
%\newlength{\stdfigwidth}\setlength{\stdfigwidth}{\columnwidth} |
39 |
\newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc} |
40 |
%\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc} |
41 |
\newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth} |
42 |
\newcommand{\fpath}{figs} |
43 |
|
44 |
% commenting scheme |
45 |
\newcommand{\ml}[1]{\textsf{\slshape #1}} |
46 |
|
47 |
\title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate |
48 |
Estimation on an Arakawa C-Grid} |
49 |
|
50 |
\author{Martin Losch, Dimitris Menemenlis, Patrick Heimbach, \\ |
51 |
Jean-Michel Campin, and Chris Hill} |
52 |
\begin{document} |
53 |
|
54 |
\maketitle |
55 |
|
56 |
\input{ceaice_abstract.tex} |
57 |
|
58 |
\input{ceaice_intro.tex} |
59 |
|
60 |
\input{ceaice_model.tex} |
61 |
|
62 |
\input{ceaice_forward.tex} |
63 |
|
64 |
\input{ceaice_adjoint.tex} |
65 |
|
66 |
\input{ceaice_concl.tex} |
67 |
|
68 |
\paragraph{Acknowledgements} |
69 |
We thank Jinlun Zhang for providing the original B-grid code and many |
70 |
helpful discussions. ML thanks Elizabeth Hunke for multiple explanations. |
71 |
|
72 |
This work is a contribution to Estimating the Circulation and Climate of the |
73 |
Ocean, Phase II (ECCO2). The ECCO2 project (http://ecco2.org/) is sponsored |
74 |
by the NASA Modeling Analysis and Prediction (MAP) program. D. Menemenlis |
75 |
carried out this work at the Jet Propulsion Laboratory, California Institute |
76 |
of Technology under contract with the National Aeronautics and Space |
77 |
Administration. |
78 |
|
79 |
\bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram,bib/mit_biblio} |
80 |
|
81 |
\end{document} |
82 |
|
83 |
%%% Local Variables: |
84 |
%%% mode: latex |
85 |
%%% TeX-master: t |
86 |
%%% End: |
87 |
|
88 |
|
89 |
A Dynamic-Thermodynamic Sea ice Model for Ocean Climate |
90 |
Estimation on an Arakawa C-Grid |
91 |
|
92 |
Introduction |
93 |
|
94 |
Ice Model: |
95 |
Dynamics formulation. |
96 |
B-C, LSR, EVP, no-slip, slip |
97 |
parallellization |
98 |
Thermodynamics formulation. |
99 |
0-layer Hibler salinity + snow |
100 |
3-layer Winton |
101 |
|
102 |
Idealized tests |
103 |
Funnel Experiments |
104 |
Downstream Island tests |
105 |
B-grid LSR no-slip |
106 |
C-grid LSR no-slip |
107 |
C-grid LSR slip |
108 |
C-grid EVP no-slip |
109 |
C-grid EVP slip |
110 |
|
111 |
Arctic Setup |
112 |
Configuration |
113 |
OBCS from cube |
114 |
forcing |
115 |
1/2 and full resolution |
116 |
with a few JFM figs from C-grid LSR no slip |
117 |
ice transport through Canadian Archipelago |
118 |
thickness distribution |
119 |
ice velocity and transport |
120 |
|
121 |
Arctic forward sensitivity experiments |
122 |
B-grid LSR no-slip |
123 |
C-grid LSR no-slip |
124 |
C-grid LSR slip |
125 |
C-grid EVP no-slip |
126 |
C-grid EVP slip |
127 |
C-grid LSR no-slip + Winton |
128 |
speed-performance-accuracy (small) |
129 |
ice transport through Canadian Archipelago differences |
130 |
thickness distribution differences |
131 |
ice velocity and transport differences |
132 |
|
133 |
Adjoint sensitivity experiment on 1/2-res setup |
134 |
Sensitivity of sea ice volume flow through Fram Strait |
135 |
*** Sensitivity of sea ice volume flow through Canadian Archipelago |
136 |
|
137 |
Summary and conluding remarks |