/[MITgcm]/MITgcm_contrib/articles/ceaice/ceaice.tex
ViewVC logotype

Diff of /MITgcm_contrib/articles/ceaice/ceaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by dimitri, Wed Nov 7 14:35:09 2007 UTC revision 1.5 by mlosch, Mon Jan 14 15:46:54 2008 UTC
# Line 1  Line 1 
1  \documentclass[12pt]{article}  \documentclass[12pt]{article}
2  \usepackage{epsfig}  
3  \usepackage{graphics}  \usepackage[]{graphicx}
4  \usepackage{subfigure}  \usepackage{subfigure}
5    
6  \usepackage[round,comma]{natbib}  \usepackage[round,comma]{natbib}
7  \bibliographystyle{agu04}  \bibliographystyle{bib/agu04}
8    
9  \usepackage{amsmath,amssymb}  \usepackage{amsmath,amssymb}
10  \newcommand\bmmax{10} \newcommand\hmmax{10}  \newcommand\bmmax{10} \newcommand\hmmax{10}
# Line 35  Line 35 
35  \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}  \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}
36  %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}  %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}
37  \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}  \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}
38  \newcommand{\fpath}{.}  \newcommand{\fpath}{figs}
39    
40    % commenting scheme
41    \newcommand{\ml}[1]{\textsf{\slshape #1}}
42    
43  \title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate  \title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
44    Estimation on an Arakawa C-Grid}    Estimation on an Arakawa C-Grid}
# Line 127  The ice strain rate is given by Line 130  The ice strain rate is given by
130      \frac{\partial{u_{i}}}{\partial{x_{j}}} +      \frac{\partial{u_{i}}}{\partial{x_{j}}} +
131      \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).      \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
132  \end{equation*}  \end{equation*}
133  The pressure $P$, a measure of ice strength, depends on both thickness  The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
134  $h$ and compactness (concentration) $c$: \[P =  both thickness $h$ and compactness (concentration) $c$:
135  P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},\] with the constants $P^{*}$ and  \begin{equation}
136  $C^{*}$. The nonlinear bulk and shear viscosities $\eta$ and $\zeta$    P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
137  are functions of ice strain rate invariants and ice strength such that  \label{icestrength}
138  the principal components of the stress lie on an elliptical yield  \end{equation}
139  curve with the ratio of major to minor axis $e$ equal to $2$; they are  with the constants $P^{*}$ and $C^{*}$. The nonlinear bulk and shear
140  given by:  viscosities $\eta$ and $\zeta$ are functions of ice strain rate
141    invariants and ice strength such that the principal components of the
142    stress lie on an elliptical yield curve with the ratio of major to
143    minor axis $e$ equal to $2$; they are given by:
144  \begin{align*}  \begin{align*}
145    \zeta =& \frac{P}{2\Delta} \\    \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
146    \eta =& \frac{P}{2\Delta{e}^2} \\     \zeta_{\max}\right) \\
147      \eta =& \frac{\zeta}{e^2} \\
148    \intertext{with the abbreviation}    \intertext{with the abbreviation}
149    \Delta = & \left[    \Delta = & \left[
150      \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)      \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
# Line 145  given by: Line 152  given by:
152      2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})      2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
153    \right]^{-\frac{1}{2}}    \right]^{-\frac{1}{2}}
154  \end{align*}  \end{align*}
155    The bulk viscosities are bounded above by imposing both a minimum
156    $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ (for numerical reasons) and a
157    maximum $\zeta_{\max} = P_{\max}/\Delta^*$, where
158    $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress
159    tensor compuation the replacement pressure $P = 2\,\Delta\zeta$
160    \citep{hibler95} is used so that the stress state always lies on the
161    elliptic yield curve by definition.
162    
163  In the current implementation, the VP-model is integrated with the  In the current implementation, the VP-model is integrated with the
164  semi-implicit line successive over relaxation (LSOR)-solver of  semi-implicit line successive over relaxation (LSOR)-solver of
165  \citet{zhang98}, which allows for long time steps that, in our case,  \citet{zhang98}, which allows for long time steps that, in our case,
# Line 287  the two ice layers and the thickness of Line 302  the two ice layers and the thickness of
302  \section{Funnel Experiments}  \section{Funnel Experiments}
303  \label{sec:funnel}  \label{sec:funnel}
304    
305  \begin{itemize}  For a first/detailed comparison between the different variants of the
306  \item B-grid LSR no-slip  MIT sea ice model an idealized geometry of a periodic channel,
307  \item C-grid LSR no-slip  1000\,km long and 500\,m wide on a non-rotating plane, with converging
308  \item C-grid LSR slip  walls forming a symmetric funnel and a narrow strait of 40\,km width
309  \item C-grid EVP no-slip  is used. The horizontal resolution is 5\,km throughout the domain
310  \item C-grid EVP slip  making the narrow strait 8 grid points wide. The ice model is
311  \end{itemize}  initialized with a complete ice cover of 50\,cm uniform thickness. The
312    ice model is driven by a constant along channel eastward ocean current
313  \subsection{B-grid vs.\ C-grid}  of 25\,cm/s that does not see the walls in the domain. All other
314  Comparison between:  ice-ocean-atmosphere interactions are turned off, in particular there
315  \begin{itemize}  is no feedback of ice dynamics on the ocean current. All thermodynamic
316  \item B-grid, lsr, no-slip  processes are turned off so that ice thickness variations are only
317  \item C-grid, lsr, no-slip  caused by convergent or divergent ice flow. Ice volume (effective
318  \item C-grid, evp, no-slip  thickness) and concentration are advected with a third-order scheme
319  \end{itemize}  with a flux limiter \citep{hundsdorfer94} to avoid undershoots. This
320  all without ice-ocean stress, because ice-ocean stress does not work  scheme is unconditionally stable and does not require additional
321  for B-grid.  diffusion. The time step used here is 1\,h.
322    
323    \reffig{funnelf0} compares the dynamic fields ice concentration $c$,
324    effective thickness $h_{eff} = h\cdot{c}$, and velocities $(u,v)$ for
325    five different cases at steady state (after 10\,years of integration):
326    \begin{description}
327    \item[B-LSRns:] LSR solver with no-slip boundary conditions on a B-grid,
328    \item[C-LSRns:] LSR solver with no-slip boundary conditions on a C-grid,
329    \item[C-LSRfs:] LSR solver with free-slip boundary conditions on a C-grid,
330    \item[C-EVPns:] EVP solver with no-slip boundary conditions on a C-grid,
331    \item[C-EVPfs:] EVP solver with free-slip boundary conditions on a C-grid,
332    \end{description}
333    \ml{[We have not implemented the EVP solver on a B-grid.]}
334    \begin{figure*}[htbp]
335      \includegraphics[width=\widefigwidth]{\fpath/all_086280}
336      \caption{Ice concentration, effective thickness [m], and ice
337        velocities [m/s]
338        for 5 different numerical solutions.}
339      \label{fig:funnelf0}
340    \end{figure*}
341    At a first glance, the solutions look similar. This is encouraging as
342    the details of discretization and numerics should not affect the
343    solutions to first order. In all cases the ice-ocean stress pushes the
344    ice cover eastwards, where it converges in the funnel. In the narrow
345    channel the ice moves quickly (nearly free drift) and leaves the
346    channel as narrow band.
347    
348    A close look reveals interesting differences between the B- and C-grid
349    results. The zonal velocity in the narrow channel is nearly the free
350    drift velocity ( = ocean velocity) of 25\,cm/s for the C-grid
351    solutions, regardless of the boundary conditions, while it is just
352    above 20\,cm/s for the B-grid solution. The ice accelerates to
353    25\,cm/s after it exits the channel. Concentrating on the solutions
354    B-LSRns and C-LSRns, the ice volume (effective thickness) along the
355    boundaries in the narrow channel is larger in the B-grid case although
356    the ice concentration is reduces in the C-grid case. The combined
357    effect leads to a larger actual ice thickness at smaller
358    concentrations in the C-grid case. However, since the effective
359    thickness determines the ice strength $P$ in Eq\refeq{icestrength},
360    the ice strength and thus the bulk and shear viscosities are larger in
361    the B-grid case leading to more horizontal friction. This circumstance
362    might explain why the no-slip boundary conditions in the B-grid case
363    appear to be more effective in reducing the flow within the narrow
364    channel, than in the C-grid case. Further, the viscosities are also
365    sensitive to details of the velocity gradients. Via $\Delta$, these
366    gradients enter the viscosities in the denominator so that large
367    gradients tend to reduce the viscosities. This again favors more flow
368    along the boundaries in the C-grid case: larger velocities
369    (\reffig{funnelf0}) on grid points that are closer to the boundary by
370    a factor $\frac{1}{2}$ than in the B-grid case because of the stagger
371    nature of the C-grid lead numerically to larger tangential gradients
372    across the boundary; these in turn make the viscosities smaller for
373    less tangential friction and allow more tangential flow along the
374    boundaries.
375    
376    The above argument can also be invoked to explain the small
377    differences between the free-slip and no-slip solutions on the C-grid.
378    Because of the non-linearities in the ice viscosities, in particular
379    along the boundaries, the no-slip boundary conditions has only a small
380    impact on the solution.
381    
382    The difference between LSR and EVP solutions is largest in the
383    effective thickness and meridional velocity fields. The velocity field
384    appears to be a little noisy. This noise has been address by
385    \citet{hunke01}. It can be dealt with by reducing EVP's internal time
386    step (increasing the number of iterations along with the computational
387    cost) or by regularizing the bulk and shear viscosities. We revisit
388    the latter option by reproducing some of the results of
389    \citet{hunke01}, namely the experiment described in her section~4, for
390    our C-grid no-slip cases: in a square domain with a few islands the
391    ice model is initialized with constant ice thickness and linearly
392    increasing ice concentration to the east. The model dynamics are
393    forced with a constant anticyclonic ocean gyre and variable
394    atmospheric wind whose mean directed diagnonally to the north-east
395    corner of the domain; ice volume and concentration are held constant
396    (no advection by ice velocity).  \reffig{hunke01} shows the ice
397    velocity field, its divergence, and the bulk viscosity $\zeta$ for the
398    cases C-LRSns and C-EVPns, and for a C-EVPns case, where
399    \citet{hunke01}'s regularization has been implemented; compare to
400    Fig.\,4 in \citet{hunke01}. The regularization contraint limits ice
401    strength and viscosities as a function of damping time scale,
402    resolution and EVP-time step, effectively allowing the elastic waves to
403    damp out more quickly \citep{hunke01}.
404    \begin{figure*}[htbp]
405      \includegraphics[width=\widefigwidth]{\fpath/hun12days}
406      \caption{Hunke's test case.}
407      \label{fig:hunke01}
408    \end{figure*}
409    
410    In the far right (``east'') side of the domain the ice concentration
411    is close to one and the ice should be nearly rigid. The applied wind
412    tends to push ice toward the upper right corner. Because the highly
413    compact ice is confinded by the boundary, it resists any further
414    compression and exhibits little motion in the rigid region on the
415    right hand side. The C-LSRns solution (top row) allows high
416    viscosities in the rigid region suppressing nearly all flow.
417    \citet{hunke01}'s regularization for the C-EVPns solution (bottom row)
418    clearly suppresses the noise present in $\nabla\cdot\vek{u}$ in the
419    unregularized case (middle row), at the cost of reduced viscosities
420    These reduced viscosities lead to small but finite ice velocities
421    which in turn can have a strong effect on solutions in the limit of
422    nearly rigid regimes (arching and blocking, not shown).
423    
424    
425    %\begin{itemize}
426    %\item B-grid LSR no-slip
427    %\item C-grid LSR no-slip
428    %\item C-grid LSR slip
429    %\item C-grid EVP no-slip
430    %\item C-grid EVP slip
431    %\end{itemize}
432    
433    %\subsection{B-grid vs.\ C-grid}
434    %Comparison between:
435    %\begin{itemize}
436    %\item B-grid, lsr, no-slip
437    %\item C-grid, lsr, no-slip
438    %\item C-grid, evp, no-slip
439    %\end{itemize}
440    %all without ice-ocean stress, because ice-ocean stress does not work
441    %for B-grid.
442    
443  \subsection{C-grid}  \subsection{C-grid}
444  \begin{itemize}  \begin{itemize}
# Line 434  We anticipate small differences between Line 569  We anticipate small differences between
569  \item ocean stress: different water mass properties beneath the ice  \item ocean stress: different water mass properties beneath the ice
570  \end{itemize}  \end{itemize}
571    
 \section{Adjoint sensitivity experiment}  
 \label{sec:adjoint}  
   
 Adjoint sensitivity experiment on 1/2-res setup  
  Sensitivity of sea ice volume flow through Fram Strait  
   
572  \section{Adjoint sensiivities of the MITsim}  \section{Adjoint sensiivities of the MITsim}
573    
574  \subsection{The adjoint of MITsim}  \subsection{The adjoint of MITsim}
# Line 600  the circulation around Svalbard, and ... Line 729  the circulation around Svalbard, and ...
729  \begin{figure}[t!]  \begin{figure}[t!]
730  \centerline{  \centerline{
731  \subfigure[{\footnotesize -12 months}]  \subfigure[{\footnotesize -12 months}]
732  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim072_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim072_cmax2.0E+02.eps}}
733  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
734  %  %
735  \subfigure[{\footnotesize -24 months}]  \subfigure[{\footnotesize -24 months}]
736  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim145_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim145_cmax2.0E+02.eps}}
737  }  }
738    
739  \centerline{  \centerline{
740  \subfigure[{\footnotesize  \subfigure[{\footnotesize
741  -36 months}]  -36 months}]
742  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim218_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim218_cmax2.0E+02.eps}}
743  %  %
744  \subfigure[{\footnotesize  \subfigure[{\footnotesize
745  -48 months}]  -48 months}]
746  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim292_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim292_cmax2.0E+02.eps}}
747  }  }
748  \caption{Sensitivity of sea-ice export through Fram Strait in December 2005 to  \caption{Sensitivity of sea-ice export through Fram Strait in December 2005 to
749  sea-ice thickness at various prior times.  sea-ice thickness at various prior times.
# Line 625  sea-ice thickness at various prior times Line 754  sea-ice thickness at various prior times
754  \begin{figure}[t!]  \begin{figure}[t!]
755  \centerline{  \centerline{
756  \subfigure[{\footnotesize -12 months}]  \subfigure[{\footnotesize -12 months}]
757  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim072_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim072_cmax5.0E+01.eps}}
758  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
759  %  %
760  \subfigure[{\footnotesize -24 months}]  \subfigure[{\footnotesize -24 months}]
761  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim145_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim145_cmax5.0E+01.eps}}
762  }  }
763    
764  \centerline{  \centerline{
765  \subfigure[{\footnotesize  \subfigure[{\footnotesize
766  -36 months}]  -36 months}]
767  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim218_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim218_cmax5.0E+01.eps}}
768  %  %
769  \subfigure[{\footnotesize  \subfigure[{\footnotesize
770  -48 months}]  -48 months}]
771  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim292_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim292_cmax5.0E+01.eps}}
772  }  }
773  \caption{Same as Fig. XXX but for sea surface temperature  \caption{Same as Fig. XXX but for sea surface temperature
774  \label{fig:4yradjthetalev1}}  \label{fig:4yradjthetalev1}}
# Line 668  parameters that we use here. What about Line 797  parameters that we use here. What about
797  We thank Jinlun Zhang for providing the original B-grid code and many  We thank Jinlun Zhang for providing the original B-grid code and many
798  helpful discussions.  helpful discussions.
799    
800  \bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram}  %\bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram}
801    \bibliography{journal_abrvs,seaice,genocean,maths,mitgcmuv,bib/fram}
802    
803  \end{document}  \end{document}
804    
# Line 676  helpful discussions. Line 806  helpful discussions.
806  %%% mode: latex  %%% mode: latex
807  %%% TeX-master: t  %%% TeX-master: t
808  %%% End:  %%% End:
809    
810    
811    A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
812      Estimation on an Arakawa C-Grid
813    
814    Introduction
815    
816    Ice Model:
817     Dynamics formulation.
818      B-C, LSR, EVP, no-slip, slip
819      parallellization
820     Thermodynamics formulation.
821      0-layer Hibler salinity + snow
822      3-layer Winton
823    
824    Idealized tests
825     Funnel Experiments
826     Downstream Island tests
827      B-grid LSR no-slip
828      C-grid LSR no-slip
829      C-grid LSR slip
830      C-grid EVP no-slip
831      C-grid EVP slip
832    
833    Arctic Setup
834     Configuration
835     OBCS from cube
836     forcing
837     1/2 and full resolution
838     with a few JFM figs from C-grid LSR no slip
839      ice transport through Canadian Archipelago
840      thickness distribution
841      ice velocity and transport
842    
843    Arctic forward sensitivity experiments
844     B-grid LSR no-slip
845     C-grid LSR no-slip
846     C-grid LSR slip
847     C-grid EVP no-slip
848     C-grid EVP slip
849     C-grid LSR no-slip + Winton
850      speed-performance-accuracy (small)
851      ice transport through Canadian Archipelago differences
852      thickness distribution differences
853      ice velocity and transport differences
854    
855    Adjoint sensitivity experiment on 1/2-res setup
856     Sensitivity of sea ice volume flow through Fram Strait
857    *** Sensitivity of sea ice volume flow through Canadian Archipelago
858    
859    Summary and conluding remarks

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.5

  ViewVC Help
Powered by ViewVC 1.1.22