/[MITgcm]/MITgcm_contrib/articles/ceaice/ceaice.tex
ViewVC logotype

Diff of /MITgcm_contrib/articles/ceaice/ceaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by dimitri, Wed Nov 7 17:26:13 2007 UTC revision 1.4 by mlosch, Thu Jan 10 15:47:32 2008 UTC
# Line 1  Line 1 
1  \documentclass[12pt]{article}  \documentclass[12pt]{article}
2  \usepackage{epsfig}  
3  \usepackage{graphics}  \usepackage{graphicx,subfigure}
 \usepackage{subfigure}  
4    
5  \usepackage[round,comma]{natbib}  \usepackage[round,comma]{natbib}
6  \bibliographystyle{bib/agu04}  \bibliographystyle{bib/agu04}
# Line 35  Line 34 
34  \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}  \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}
35  %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}  %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}
36  \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}  \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}
37  \newcommand{\fpath}{.}  \newcommand{\fpath}{figs}
38    
39    % commenting scheme
40    \newcommand{\ml}[1]{\textsf{\slshape #1}}
41    
42  \title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate  \title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
43    Estimation on an Arakawa C-Grid}    Estimation on an Arakawa C-Grid}
# Line 128  The ice strain rate is given by Line 130  The ice strain rate is given by
130      \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).      \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
131  \end{equation*}  \end{equation*}
132  The pressure $P$, a measure of ice strength, depends on both thickness  The pressure $P$, a measure of ice strength, depends on both thickness
133  $h$ and compactness (concentration) $c$: \[P =  $h$ and compactness (concentration) $c$:
134  P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},\] with the constants $P^{*}$ and  \begin{equation}
135  $C^{*}$. The nonlinear bulk and shear viscosities $\eta$ and $\zeta$    P = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
136  are functions of ice strain rate invariants and ice strength such that  \label{icestrength}
137  the principal components of the stress lie on an elliptical yield  \end{equation}
138  curve with the ratio of major to minor axis $e$ equal to $2$; they are  with the constants $P^{*}$ and $C^{*}$. The nonlinear bulk and shear
139  given by:  viscosities $\eta$ and $\zeta$ are functions of ice strain rate
140    invariants and ice strength such that the principal components of the
141    stress lie on an elliptical yield curve with the ratio of major to
142    minor axis $e$ equal to $2$; they are given by:
143  \begin{align*}  \begin{align*}
144    \zeta =& \frac{P}{2\Delta} \\    \zeta =& \frac{P}{2\Delta} \\
145    \eta =& \frac{P}{2\Delta{e}^2} \\    \eta =& \frac{P}{2\Delta{e}^2} \\
# Line 287  the two ice layers and the thickness of Line 292  the two ice layers and the thickness of
292  \section{Funnel Experiments}  \section{Funnel Experiments}
293  \label{sec:funnel}  \label{sec:funnel}
294    
295    For a first/detailed comparison between the different variants of the
296    MIT sea ice model an idealized geometry of a periodic channel,
297    1000\,km long and 500\,m wide on a non-rotating plane, with converging
298    walls forming a symmetric funnel and a narrow strait of 40\,km width
299    is used. The horizontal resolution is 5\,km throughout the domain
300    making the narrow strait 8 grid points wide. The ice model is
301    initialized with a complete ice cover of 50\,cm uniform thickness. The
302    ice model is driven by a constant along channel eastward ocean current
303    of 25\,cm/s that does not see the walls in the domain. All other
304    ice-ocean-atmosphere interactions are turned off, in particular there
305    is no feedback of ice dynamics on the ocean current. All thermodynamic
306    processes are turned off so that ice thickness variations are only
307    caused by convergent or divergent ice flow. Ice volume (effective
308    thickness) and concentration are advected with a third-order scheme
309    with a flux limiter \citep{hundsdorfer94} to avoid undershoots. This
310    scheme is unconditionally stable and does not require additional
311    diffusion. The time step used here is 1\,h.
312    
313    \reffig{funnelf0} compares the dynamic fields ice concentration $c$,
314    effective thickness $h_{eff} = h\cdot{c}$, and velocities $(u,v)$ for
315    five different cases at steady state (after 10\,years of integration):
316    \begin{description}
317    \item[B-LSRns:] LSR solver with no-slip boundary conditions on a B-grid,
318    \item[C-LSRns:] LSR solver with no-slip boundary conditions on a C-grid,
319    \item[C-LSRfs:] LSR solver with free-slip boundary conditions on a C-grid,
320    \item[C-EVPns:] EVP solver with no-slip boundary conditions on a C-grid,
321    \item[C-EVPfs:] EVP solver with free-slip boundary conditions on a C-grid,
322    \end{description}
323    \ml{[We have not implemented the EVP solver on a B-grid.]}
324    \begin{figure*}[htbp]
325      \includegraphics[width=\widefigwidth]{\fpath/all_086280}
326      \caption{Ice concentration, effective thickness [m], and ice
327        velocities [m/s]
328        for 5 different numerical solutions.}
329      \label{fig:funnelf0}
330    \end{figure*}
331    At a first glance, the solutions look similar. This is encouraging as
332    the details of discretization and numerics should not affect the
333    solutions to first order. In all cases the ice-ocean stress pushes the
334    ice cover eastwards, where it converges in the funnel. In the narrow
335    channel the ice moves quickly (nearly free drift) and leaves the
336    channel as narrow band.
337    
338    A close look reveals interesting differences between the B- and C-grid
339    results. The zonal velocity in the narrow channel is nearly the free
340    drift velocity ( = ocean velocity) of 25\,cm/s for the C-grid
341    solutions, regardless of the boundary conditions, while it is just
342    above 20\,cm/s for the B-grid solution. The ice accelerates to
343    25\,cm/s after it exits the channel. Concentrating on the solutions
344    B-LSRns and C-LSRns, the ice volume (effective thickness) along the
345    boundaries in the narrow channel is larger in the B-grid case although
346    the ice concentration is reduces in the C-grid case. The combined
347    effect leads to a larger actual ice thickness at smaller
348    concentrations in the C-grid case. However, since the effective
349    thickness determines the ice strength $P$ in Eq\refeq{icestrength},
350    the ice strength and thus the bulk and shear viscosities are larger in
351    the B-grid case leading to more horizontal friction. This circumstance
352    might explain why the no-slip boundary conditions in the B-grid case
353    appear to be more effective in reducing the flow within the narrow
354    channel, than in the C-grid case. Further, the viscosities are also
355    sensitive to details of the velocity gradients. Via $\Delta$, these
356    gradients enter the viscosities in the denominator so that large
357    gradients tend to reduce the viscosities. This again favors more flow
358    along the boundaries in the C-grid case: larger velocities
359    (\reffig{funnelf0}) on grid points that are closer to the boundary by
360    a factor $\frac{1}{2}$ than in the B-grid case because of the stagger
361    nature of the C-grid lead numerically to larger tangential gradients
362    across the boundary; these in turn make the viscosities smaller for
363    less tangential friction and allow more tangential flow along the
364    boundaries.
365    
366    The above argument can also be invoked to explain the small
367    differences between the free-slip and no-slip solutions on the C-grid.
368    Because of the non-linearities in the ice viscosities, in particular
369    along the boundaries, the no-slip boundary conditions has only a small
370    impact on the solution.
371    
372    The difference between LSR and EVP solutions is largest in the
373    effective thickness and meridional velocity fields. The velocity field
374    appears to be a little noisy. This noise has been address by
375    \citet{hunke01}. It can be dealt with by reducing EVP's internal time
376    step (increasing the number of iterations) or by regularizing the bulk
377    and shear viscosities. We revisit the latter option by reproducing the
378    results of \citet{hunke01} for the C-grid no-slip cases.
379    \begin{figure*}[htbp]
380      \includegraphics[width=\widefigwidth]{\fpath/hun12days}
381      \caption{Hunke's test case.}
382      \label{fig:hunke01}
383    \end{figure*}
384    
385  \begin{itemize}  \begin{itemize}
386  \item B-grid LSR no-slip  \item B-grid LSR no-slip
387  \item C-grid LSR no-slip  \item C-grid LSR no-slip
# Line 594  the circulation around Svalbard, and ... Line 689  the circulation around Svalbard, and ...
689  \begin{figure}[t!]  \begin{figure}[t!]
690  \centerline{  \centerline{
691  \subfigure[{\footnotesize -12 months}]  \subfigure[{\footnotesize -12 months}]
692  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim072_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim072_cmax2.0E+02.eps}}
693  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
694  %  %
695  \subfigure[{\footnotesize -24 months}]  \subfigure[{\footnotesize -24 months}]
696  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim145_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim145_cmax2.0E+02.eps}}
697  }  }
698    
699  \centerline{  \centerline{
700  \subfigure[{\footnotesize  \subfigure[{\footnotesize
701  -36 months}]  -36 months}]
702  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim218_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim218_cmax2.0E+02.eps}}
703  %  %
704  \subfigure[{\footnotesize  \subfigure[{\footnotesize
705  -48 months}]  -48 months}]
706  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim292_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim292_cmax2.0E+02.eps}}
707  }  }
708  \caption{Sensitivity of sea-ice export through Fram Strait in December 2005 to  \caption{Sensitivity of sea-ice export through Fram Strait in December 2005 to
709  sea-ice thickness at various prior times.  sea-ice thickness at various prior times.
# Line 619  sea-ice thickness at various prior times Line 714  sea-ice thickness at various prior times
714  \begin{figure}[t!]  \begin{figure}[t!]
715  \centerline{  \centerline{
716  \subfigure[{\footnotesize -12 months}]  \subfigure[{\footnotesize -12 months}]
717  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim072_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim072_cmax5.0E+01.eps}}
718  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
719  %  %
720  \subfigure[{\footnotesize -24 months}]  \subfigure[{\footnotesize -24 months}]
721  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim145_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim145_cmax5.0E+01.eps}}
722  }  }
723    
724  \centerline{  \centerline{
725  \subfigure[{\footnotesize  \subfigure[{\footnotesize
726  -36 months}]  -36 months}]
727  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim218_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim218_cmax5.0E+01.eps}}
728  %  %
729  \subfigure[{\footnotesize  \subfigure[{\footnotesize
730  -48 months}]  -48 months}]
731  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim292_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim292_cmax5.0E+01.eps}}
732  }  }
733  \caption{Same as Fig. XXX but for sea surface temperature  \caption{Same as Fig. XXX but for sea surface temperature
734  \label{fig:4yradjthetalev1}}  \label{fig:4yradjthetalev1}}
# Line 670  helpful discussions. Line 765  helpful discussions.
765  %%% mode: latex  %%% mode: latex
766  %%% TeX-master: t  %%% TeX-master: t
767  %%% End:  %%% End:
768    
769    
770    A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
771      Estimation on an Arakawa C-Grid
772    
773    Introduction
774    
775    Ice Model:
776     Dynamics formulation.
777      B-C, LSR, EVP, no-slip, slip
778      parallellization
779     Thermodynamics formulation.
780      0-layer Hibler salinity + snow
781      3-layer Winton
782    
783    Idealized tests
784     Funnel Experiments
785     Downstream Island tests
786      B-grid LSR no-slip
787      C-grid LSR no-slip
788      C-grid LSR slip
789      C-grid EVP no-slip
790      C-grid EVP slip
791    
792    Arctic Setup
793     Configuration
794     OBCS from cube
795     forcing
796     1/2 and full resolution
797     with a few JFM figs from C-grid LSR no slip
798      ice transport through Canadian Archipelago
799      thickness distribution
800      ice velocity and transport
801    
802    Arctic forward sensitivity experiments
803     B-grid LSR no-slip
804     C-grid LSR no-slip
805     C-grid LSR slip
806     C-grid EVP no-slip
807     C-grid EVP slip
808     C-grid LSR no-slip + Winton
809      speed-performance-accuracy (small)
810      ice transport through Canadian Archipelago differences
811      thickness distribution differences
812      ice velocity and transport differences
813    
814    Adjoint sensitivity experiment on 1/2-res setup
815     Sensitivity of sea ice volume flow through Fram Strait
816    *** Sensitivity of sea ice volume flow through Canadian Archipelago
817    
818    Summary and conluding remarks

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.4

  ViewVC Help
Powered by ViewVC 1.1.22