/[MITgcm]/MITgcm_contrib/articles/ceaice/ceaice.tex
ViewVC logotype

Diff of /MITgcm_contrib/articles/ceaice/ceaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by dimitri, Wed Nov 7 14:38:57 2007 UTC revision 1.11 by mlosch, Mon Feb 25 19:30:56 2008 UTC
# Line 1  Line 1 
1    % $Header$
2    % $Name$
3  \documentclass[12pt]{article}  \documentclass[12pt]{article}
4  \usepackage{epsfig}  
5  \usepackage{graphics}  \usepackage[]{graphicx}
6  \usepackage{subfigure}  \usepackage{subfigure}
7    
8  \usepackage[round,comma]{natbib}  \usepackage[round,comma]{natbib}
# Line 35  Line 37 
37  \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}  \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}
38  %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}  %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}
39  \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}  \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}
40  \newcommand{\fpath}{.}  \newcommand{\fpath}{figs}
41    
42    % commenting scheme
43    \newcommand{\ml}[1]{\textsf{\slshape #1}}
44    
45  \title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate  \title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
46    Estimation on an Arakawa C-Grid}    Estimation on an Arakawa C-Grid}
# Line 47  Line 52 
52  \maketitle  \maketitle
53    
54  \begin{abstract}  \begin{abstract}
55    Some blabla  
56    As part of ongoing efforts to obtain a best possible synthesis of most
57    available, global-scale, ocean and sea ice data, dynamic and thermodynamic
58    sea-ice model components have been incorporated in the Massachusetts Institute
59    of Technology general circulation model (MITgcm).  Sea-ice dynamics use either
60    a visco-plastic rheology solved with a line successive relaxation (LSR)
61    technique, reformulated on an Arakawa C-grid in order to match the oceanic and
62    atmospheric grids of the MITgcm, and modified to permit efficient and accurate
63    automatic differentiation of the coupled ocean and sea-ice model
64    configurations.
65    
66  \end{abstract}  \end{abstract}
67    
68  \section{Introduction}  \section{Introduction}
# Line 127  The ice strain rate is given by Line 142  The ice strain rate is given by
142      \frac{\partial{u_{i}}}{\partial{x_{j}}} +      \frac{\partial{u_{i}}}{\partial{x_{j}}} +
143      \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).      \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
144  \end{equation*}  \end{equation*}
145  The pressure $P$, a measure of ice strength, depends on both thickness  The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
146  $h$ and compactness (concentration) $c$: \[P =  both thickness $h$ and compactness (concentration) $c$:
147  P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},\] with the constants $P^{*}$ and  \begin{equation}
148  $C^{*}$. The nonlinear bulk and shear viscosities $\eta$ and $\zeta$    P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
149  are functions of ice strain rate invariants and ice strength such that  \label{eq:icestrength}
150  the principal components of the stress lie on an elliptical yield  \end{equation}
151  curve with the ratio of major to minor axis $e$ equal to $2$; they are  with the constants $P^{*}$ and $C^{*}$. The nonlinear bulk and shear
152  given by:  viscosities $\eta$ and $\zeta$ are functions of ice strain rate
153    invariants and ice strength such that the principal components of the
154    stress lie on an elliptical yield curve with the ratio of major to
155    minor axis $e$ equal to $2$; they are given by:
156  \begin{align*}  \begin{align*}
157    \zeta =& \frac{P}{2\Delta} \\    \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
158    \eta =& \frac{P}{2\Delta{e}^2} \\     \zeta_{\max}\right) \\
159      \eta =& \frac{\zeta}{e^2} \\
160    \intertext{with the abbreviation}    \intertext{with the abbreviation}
161    \Delta = & \left[    \Delta = & \left[
162      \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)      \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
# Line 145  given by: Line 164  given by:
164      2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})      2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
165    \right]^{-\frac{1}{2}}    \right]^{-\frac{1}{2}}
166  \end{align*}  \end{align*}
167    The bulk viscosities are bounded above by imposing both a minimum
168    $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ (for numerical reasons) and a
169    maximum $\zeta_{\max} = P_{\max}/\Delta^*$, where
170    $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress
171    tensor compuation the replacement pressure $P = 2\,\Delta\zeta$
172    \citep{hibler95} is used so that the stress state always lies on the
173    elliptic yield curve by definition.
174    
175    In the so-called truncated ellipse method the shear viscosity $\eta$
176    is capped to suppress any tensile stress \citep{hibler97, geiger98}:
177    \begin{equation}
178      \label{eq:etatem}
179      \eta = \min(\frac{\zeta}{e^2}
180      \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
181      {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
182          +4\dot{\epsilon}_{12}^2}}
183    \end{equation}
184    
185  In the current implementation, the VP-model is integrated with the  In the current implementation, the VP-model is integrated with the
186  semi-implicit line successive over relaxation (LSOR)-solver of  semi-implicit line successive over relaxation (LSOR)-solver of
187  \citet{zhang98}, which allows for long time steps that, in our case,  \citet{zhang98}, which allows for long time steps that, in our case,
# Line 284  addition to ice-thickness and compactnes Line 321  addition to ice-thickness and compactnes
321  state variables to be advected by ice velocities, namely enthalphy of  state variables to be advected by ice velocities, namely enthalphy of
322  the two ice layers and the thickness of the overlying snow layer.  the two ice layers and the thickness of the overlying snow layer.
323    
 \section{Funnel Experiments}  
 \label{sec:funnel}  
   
 \begin{itemize}  
 \item B-grid LSR no-slip  
 \item C-grid LSR no-slip  
 \item C-grid LSR slip  
 \item C-grid EVP no-slip  
 \item C-grid EVP slip  
 \end{itemize}  
   
 \subsection{B-grid vs.\ C-grid}  
 Comparison between:  
 \begin{itemize}  
 \item B-grid, lsr, no-slip  
 \item C-grid, lsr, no-slip  
 \item C-grid, evp, no-slip  
 \end{itemize}  
 all without ice-ocean stress, because ice-ocean stress does not work  
 for B-grid.  
324    
325  \subsection{C-grid}  \subsection{C-grid}
326  \begin{itemize}  \begin{itemize}
# Line 350  differences between the two main options Line 367  differences between the two main options
367  \subsection{Arctic Domain with Open Boundaries}  \subsection{Arctic Domain with Open Boundaries}
368  \label{sec:arctic}  \label{sec:arctic}
369    
370  The Arctic domain of integration is illustrated in Fig.~\ref{???}.  It is  The Arctic domain of integration is illustrated in Fig.~\ref{???}.  It
371  carved out from, and obtains open boundary conditions from, the global  is carved out from, and obtains open boundary conditions from, the
372  cubed-sphere configuration of the Estimating the Circulation and Climate of  global cubed-sphere configuration of the Estimating the Circulation
373  the Ocean, Phase II (ECCO2) project \cite{men05a}.  The domain size is 420 by  and Climate of the Ocean, Phase II (ECCO2) project
374  384 grid boxes horizontally with mean horizontal grid spacing of 18 km.    \citet{menemenlis05}.  The domain size is 420 by 384 grid boxes
375    horizontally with mean horizontal grid spacing of 18 km.
376    
377  There are 50 vertical levels ranging in thickness from 10 m near the surface  There are 50 vertical levels ranging in thickness from 10 m near the surface
378  to approximately 450 m at a maximum model depth of 6150 m. Bathymetry is from  to approximately 450 m at a maximum model depth of 6150 m. Bathymetry is from
379  the National Geophysical Data Center (NGDC) 2-minute gridded global relief  the National Geophysical Data Center (NGDC) 2-minute gridded global relief
380  data (ETOPO2) and the model employs the partial-cell formulation of  data (ETOPO2) and the model employs the partial-cell formulation of
381  \cite{adc97}, which permits accurate representation of the bathymetry. The  \citet{adcroft97:_shaved_cells}, which permits accurate representation of the bathymetry. The
382  model is integrated in a volume-conserving configuration using a finite volume  model is integrated in a volume-conserving configuration using a finite volume
383  discretization with C-grid staggering of the prognostic variables. In the  discretization with C-grid staggering of the prognostic variables. In the
384  ocean, the non-linear equation of state of \cite{jac95}.  The ocean model is  ocean, the non-linear equation of state of \citet{jackett95}.  The ocean model is
385  coupled to a sea-ice model described hereinabove.    coupled to a sea-ice model described hereinabove.  
386    
387  This particular ECCO2 simulation is initialized from rest using the January  This particular ECCO2 simulation is initialized from rest using the
388  temperature and salinity distribution from the World Ocean Atlas 2001 (WOA01)  January temperature and salinity distribution from the World Ocean
389  [Conkright et al., 2002] and it is integrated for 32 years prior to the  Atlas 2001 (WOA01) [Conkright et al., 2002] and it is integrated for
390  1996-2001 period discussed in the study. Surface boundary conditions are from  32 years prior to the 1996--2001 period discussed in the study. Surface
391  the National Centers for Environmental Prediction and the National Center for  boundary conditions are from the National Centers for Environmental
392  Atmospheric Research (NCEP/NCAR) atmospheric reanalysis [Kistler et al.,  Prediction and the National Center for Atmospheric Research
393  2001]. Six-hourly surface winds, temperature, humidity, downward short- and  (NCEP/NCAR) atmospheric reanalysis [Kistler et al., 2001]. Six-hourly
394  long-wave radiations, and precipitation are converted to heat, freshwater, and  surface winds, temperature, humidity, downward short- and long-wave
395  wind stress fluxes using the Large and Pond [1981, 1982] bulk  radiations, and precipitation are converted to heat, freshwater, and
396  formulae. Shortwave radiation decays exponentially as per Paulson and Simpson  wind stress fluxes using the \citet{large81, large82} bulk formulae.
397  [1977]. Additionally the time-mean river run-off from Large and Nurser [2001]  Shortwave radiation decays exponentially as per Paulson and Simpson
398  is applied and there is a relaxation to the monthly-mean climatological sea  [1977]. Additionally the time-mean river run-off from Large and Nurser
399  surface salinity values from WOA01 with a relaxation time scale of 3  [2001] is applied and there is a relaxation to the monthly-mean
400  months. Vertical mixing follows Large et al. [1994] with background vertical  climatological sea surface salinity values from WOA01 with a
401  diffusivity of 1.5 × 10-5 m2 s-1 and viscosity of 10-3 m2 s-1. A third order,  relaxation time scale of 3 months. Vertical mixing follows
402  direct-space-time advection scheme with flux limiter is employed and there is  \citet{large94} with background vertical diffusivity of
403  no explicit horizontal diffusivity. Horizontal viscosity follows Leith [1996]  $1.5\times10^{-5}\text{\,m$^{2}$\,s$^{-1}$}$ and viscosity of
404  but modified to sense the divergent flow as per Fox-Kemper and Menemenlis [in  $10^{-3}\text{\,m$^{2}$\,s$^{-1}$}$. A third order, direct-space-time
405  press].  Shortwave radiation decays exponentially as per Paulson and Simpson  advection scheme with flux limiter is employed \citep{hundsdorfer94}
406  [1977].  Additionally, the time-mean runoff of Large and Nurser [2001] is  and there is no explicit horizontal diffusivity. Horizontal viscosity
407  applied near the coastline and, where there is open water, there is a  follows \citet{lei96} but
408  relaxation to monthly-mean WOA01 sea surface salinity with a time constant of  modified to sense the divergent flow as per Fox-Kemper and Menemenlis
409  45 days.  [in press].  Shortwave radiation decays exponentially as per Paulson
410    and Simpson [1977].  Additionally, the time-mean runoff of Large and
411    Nurser [2001] is applied near the coastline and, where there is open
412    water, there is a relaxation to monthly-mean WOA01 sea surface
413    salinity with a time constant of 45 days.
414    
415  Open water, dry  Open water, dry
416  ice, wet ice, dry snow, and wet snow albedo are, respectively, 0.15, 0.85,  ice, wet ice, dry snow, and wet snow albedo are, respectively, 0.15, 0.85,
# Line 417  ice, wet ice, dry snow, and wet snow alb Line 439  ice, wet ice, dry snow, and wet snow alb
439  \item C-grid LSR slip  \item C-grid LSR slip
440  \item C-grid EVP no-slip  \item C-grid EVP no-slip
441  \item C-grid EVP slip  \item C-grid EVP slip
442    \item C-grid LSR + TEM (truncated ellipse method, no tensile stress, new flag)
443  \item C-grid LSR no-slip + Winton  \item C-grid LSR no-slip + Winton
444  \item  speed-performance-accuracy (small)  \item  speed-performance-accuracy (small)
445    ice transport through Canadian Archipelago differences    ice transport through Canadian Archipelago differences
# Line 428  We anticipate small differences between Line 451  We anticipate small differences between
451  \begin{itemize}  \begin{itemize}
452  \item advection schemes: along the ice-edge and regions with large  \item advection schemes: along the ice-edge and regions with large
453    gradients    gradients
454  \item C-grid: more transport through narrow straits for no slip  \item C-grid: less transport through narrow straits for no slip
455    conditons, less for free slip    conditons, more for free slip
456  \item VP vs.\ EVP: speed performance, accuracy?  \item VP vs.\ EVP: speed performance, accuracy?
457  \item ocean stress: different water mass properties beneath the ice  \item ocean stress: different water mass properties beneath the ice
458  \end{itemize}  \end{itemize}
459    
 \section{Adjoint sensitivity experiment}  
 \label{sec:adjoint}  
   
 Adjoint sensitivity experiment on 1/2-res setup  
  Sensitivity of sea ice volume flow through Fram Strait  
   
460  \section{Adjoint sensiivities of the MITsim}  \section{Adjoint sensiivities of the MITsim}
461    
462  \subsection{The adjoint of MITsim}  \subsection{The adjoint of MITsim}
# Line 516  storing vs. recomputation of the model s Line 533  storing vs. recomputation of the model s
533  checkpointing loop.  checkpointing loop.
534  Again, an initial code adjustment is required to support TAFs  Again, an initial code adjustment is required to support TAFs
535  checkpointing capability.  checkpointing capability.
536  The code adjustments are sufficiently simply so as not to cause  The code adjustments are sufficiently simple so as not to cause
537  major limitations to the full nonlinear parent model.  major limitations to the full nonlinear parent model.
538  Once in place, an adjoint model of a new model configuration  Once in place, an adjoint model of a new model configuration
539  may be derived in about 10 minutes.  may be derived in about 10 minutes.
# Line 539  may be derived in about 10 minutes. Line 556  may be derived in about 10 minutes.
556  We demonstrate the power of the adjoint method  We demonstrate the power of the adjoint method
557  in the context of investigating sea-ice export sensitivities through Fram Strait  in the context of investigating sea-ice export sensitivities through Fram Strait
558  (for details of this study see Heimbach et al., 2007).  (for details of this study see Heimbach et al., 2007).
559    %\citep[for details of this study see][]{heimbach07}. %Heimbach et al., 2007).
560  The domain chosen is a coarsened version of the Arctic face of the  The domain chosen is a coarsened version of the Arctic face of the
561  high-resolution cubed-sphere configuration of the ECCO2 project  high-resolution cubed-sphere configuration of the ECCO2 project
562  (see Menemenlis et al. 2005). It covers the entire Arctic,  \citep[see][]{menemenlis05}. It covers the entire Arctic,
563  extends into the North Pacific such as to cover the entire  extends into the North Pacific such as to cover the entire
564  ice-covered regions, and comprises parts of the North Atlantic  ice-covered regions, and comprises parts of the North Atlantic
565  down to XXN to enable analysis of remote influences of the  down to XXN to enable analysis of remote influences of the
# Line 552  The adjoint models run efficiently on 80 Line 570  The adjoint models run efficiently on 80
570  (benchmarks have been performed both on an SGI Altix as well as an  (benchmarks have been performed both on an SGI Altix as well as an
571  IBM SP5 at NASA/ARC).  IBM SP5 at NASA/ARC).
572    
573  Following a 1-year spinup, the model has been integrated for four years  Following a 1-year spinup, the model has been integrated for four
574  between 1992 and 1995.  years between 1992 and 1995. It is forced using realistic 6-hourly
575  It is forced using realistic 6-hourly NCEP/NCAR atmospheric state variables.  NCEP/NCAR atmospheric state variables. Over the open ocean these are
576  Over the open ocean these are converted into  converted into air-sea fluxes via the bulk formulae of
577  air-sea fluxes via the bulk formulae of Large and Yeager (2004).  \citet{large04}.  Derivation of air-sea fluxes in the presence of
578  Derivation of air-sea fluxes in the presence of sea-ice is handled  sea-ice is handled by the ice model as described in \refsec{model}.
 by the ice model as described in Section XXX.  
579  The objective function chosen is sea-ice export through Fram Strait  The objective function chosen is sea-ice export through Fram Strait
580  computed for December 1995  computed for December 1995.  The adjoint model computes sensitivities
581  The adjoint model computes sensitivities to sea-ice export back in time  to sea-ice export back in time from 1995 to 1992 along this
582  from 1995 to 1992 along this trajectory.  trajectory.  In principle all adjoint model variable (i.e., Lagrange
583  In principle all adjoint model variable (i.e. Lagrange multipliers)  multipliers) of the coupled ocean/sea-ice model are available to
584  of the coupled ocean/sea-ice model  analyze the transient sensitivity behaviour of the ocean and sea-ice
585  are available to analyze the transient sensitivity behaviour  state.  Over the open ocean, the adjoint of the bulk formula scheme
586  of the ocean and sea-ice state.  computes sensitivities to the time-varying atmospheric state.  Over
587  Over the open ocean, the adjoint of the bulk formula scheme  ice-covered parts, the sea-ice adjoint converts surface ocean
588  computes sensitivities to the time-varying atmospheric state.  sensitivities to atmospheric sensitivities.
589  Over ice-covered parts, the sea-ice adjoint converts  
590  surface ocean sensitivities to atmospheric sensitivities.  \reffig{4yradjheff}(a--d) depict sensitivities of sea-ice export
591    through Fram Strait in December 1995 to changes in sea-ice thickness
592  Fig. XXX(a--d) depict sensitivities of sea-ice export through Fram Strait  12, 24, 36, 48 months back in time. Corresponding sensitivities to
593  in December 1995 to changes in sea-ice thickness  ocean surface temperature are depicted in
594  12, 24, 36, 48 months back in time.  \reffig{4yradjthetalev1}(a--d).  The main characteristics is
595  Corresponding sensitivities to ocean surface temperature are  consistency with expected advection of sea-ice over the relevant time
596  depicted in Fig. XXX(a--d).  scales considered.  The general positive pattern means that an
597  The main characteristics is consistency with expected advection  increase in sea-ice thickness at location $(x,y)$ and time $t$ will
598  of sea-ice over the relevant time scales considered.  increase sea-ice export through Fram Strait at time $T_e$.  Largest
599  The general positive pattern means that an increase in  distances from Fram Strait indicate fastest sea-ice advection over the
600  sea-ice thickness at location $(x,y)$ and time $t$ will increase  time span considered.  The ice thickness sensitivities are in close
601  sea-ice export through Fram Strait at time $T_e$.  correspondence to ocean surface sentivitites, but of opposite sign.
602  Largest distances from Fram Strait indicate fastest sea-ice advection  An increase in temperature will incur ice melting, decrease in ice
603  over the time span considered.  thickness, and therefore decrease in sea-ice export at time $T_e$.
 The ice thickness sensitivities are in close correspondence to  
 ocean surface sentivitites, but of opposite sign.  
 An increase in temperature will incur ice melting, decrease in ice thickness,  
 and therefore decrease in sea-ice export at time $T_e$.  
604    
605  The picture is fundamentally different and much more complex  The picture is fundamentally different and much more complex
606  for sensitivities to ocean temperatures away from the surface.  for sensitivities to ocean temperatures away from the surface.
607  Fig. XXX (a--d) depicts ice export sensitivities to  \reffig{4yradjthetalev10??}(a--d) depicts ice export sensitivities to
608  temperatures at roughly 400 m depth.  temperatures at roughly 400 m depth.
609  Primary features are the effect of the heat transport of the North  Primary features are the effect of the heat transport of the North
610  Atlantic current which feeds into the West Spitsbergen current,  Atlantic current which feeds into the West Spitsbergen current,
# Line 600  the circulation around Svalbard, and ... Line 613  the circulation around Svalbard, and ...
613  \begin{figure}[t!]  \begin{figure}[t!]
614  \centerline{  \centerline{
615  \subfigure[{\footnotesize -12 months}]  \subfigure[{\footnotesize -12 months}]
616  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim072_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim072_cmax2.0E+02.eps}}
617  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
618  %  %
619  \subfigure[{\footnotesize -24 months}]  \subfigure[{\footnotesize -24 months}]
620  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim145_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim145_cmax2.0E+02.eps}}
621  }  }
622    
623  \centerline{  \centerline{
624  \subfigure[{\footnotesize  \subfigure[{\footnotesize
625  -36 months}]  -36 months}]
626  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim218_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim218_cmax2.0E+02.eps}}
627  %  %
628  \subfigure[{\footnotesize  \subfigure[{\footnotesize
629  -48 months}]  -48 months}]
630  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJheff_arc_lev1_tim292_cmax2.0E+02.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim292_cmax2.0E+02.eps}}
631  }  }
632  \caption{Sensitivity of sea-ice export through Fram Strait in December 2005 to  \caption{Sensitivity of sea-ice export through Fram Strait in December 2005 to
633  sea-ice thickness at various prior times.  sea-ice thickness at various prior times.
# Line 625  sea-ice thickness at various prior times Line 638  sea-ice thickness at various prior times
638  \begin{figure}[t!]  \begin{figure}[t!]
639  \centerline{  \centerline{
640  \subfigure[{\footnotesize -12 months}]  \subfigure[{\footnotesize -12 months}]
641  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim072_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim072_cmax5.0E+01.eps}}
642  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}  %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
643  %  %
644  \subfigure[{\footnotesize -24 months}]  \subfigure[{\footnotesize -24 months}]
645  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim145_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim145_cmax5.0E+01.eps}}
646  }  }
647    
648  \centerline{  \centerline{
649  \subfigure[{\footnotesize  \subfigure[{\footnotesize
650  -36 months}]  -36 months}]
651  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim218_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim218_cmax5.0E+01.eps}}
652  %  %
653  \subfigure[{\footnotesize  \subfigure[{\footnotesize
654  -48 months}]  -48 months}]
655  {\includegraphics*[width=0.44\linewidth]{figs/run_4yr_ADJtheta_arc_lev1_tim292_cmax5.0E+01.eps}}  {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim292_cmax5.0E+01.eps}}
656  }  }
657  \caption{Same as Fig. XXX but for sea surface temperature  \caption{Same as \reffig{4yradjheff} but for sea surface temperature
658  \label{fig:4yradjthetalev1}}  \label{fig:4yradjthetalev1}}
659  \end{figure}  \end{figure}
660    
# Line 666  parameters that we use here. What about Line 679  parameters that we use here. What about
679    
680  \paragraph{Acknowledgements}  \paragraph{Acknowledgements}
681  We thank Jinlun Zhang for providing the original B-grid code and many  We thank Jinlun Zhang for providing the original B-grid code and many
682  helpful discussions.  helpful discussions. ML thanks Elizabeth Hunke for multiple explanations.
683    
684  \bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram}  \bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram}
685    
# Line 676  helpful discussions. Line 689  helpful discussions.
689  %%% mode: latex  %%% mode: latex
690  %%% TeX-master: t  %%% TeX-master: t
691  %%% End:  %%% End:
692    
693    
694    A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
695      Estimation on an Arakawa C-Grid
696    
697    Introduction
698    
699    Ice Model:
700     Dynamics formulation.
701      B-C, LSR, EVP, no-slip, slip
702      parallellization
703     Thermodynamics formulation.
704      0-layer Hibler salinity + snow
705      3-layer Winton
706    
707    Idealized tests
708     Funnel Experiments
709     Downstream Island tests
710      B-grid LSR no-slip
711      C-grid LSR no-slip
712      C-grid LSR slip
713      C-grid EVP no-slip
714      C-grid EVP slip
715    
716    Arctic Setup
717     Configuration
718     OBCS from cube
719     forcing
720     1/2 and full resolution
721     with a few JFM figs from C-grid LSR no slip
722      ice transport through Canadian Archipelago
723      thickness distribution
724      ice velocity and transport
725    
726    Arctic forward sensitivity experiments
727     B-grid LSR no-slip
728     C-grid LSR no-slip
729     C-grid LSR slip
730     C-grid EVP no-slip
731     C-grid EVP slip
732     C-grid LSR no-slip + Winton
733      speed-performance-accuracy (small)
734      ice transport through Canadian Archipelago differences
735      thickness distribution differences
736      ice velocity and transport differences
737    
738    Adjoint sensitivity experiment on 1/2-res setup
739     Sensitivity of sea ice volume flow through Fram Strait
740    *** Sensitivity of sea ice volume flow through Canadian Archipelago
741    
742    Summary and conluding remarks

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.11

  ViewVC Help
Powered by ViewVC 1.1.22