| 1 |
% $Header: /u/gcmpack/MITgcm_contrib/articles/ceaice/ceaice.tex,v 1.23 2008/08/14 16:12:41 dimitri Exp $ |
| 2 |
% $Name: $ |
| 3 |
\documentclass[12pt]{article} |
| 4 |
|
| 5 |
\usepackage[]{graphicx} |
| 6 |
%\usepackage[draft]{graphicx} |
| 7 |
\usepackage{subfigure} |
| 8 |
|
| 9 |
\usepackage[round,comma]{natbib} |
| 10 |
\bibliographystyle{bib/agu04} |
| 11 |
|
| 12 |
\usepackage{amsmath,amssymb} |
| 13 |
\newcommand\bmmax{10} \newcommand\hmmax{10} |
| 14 |
\usepackage{bm} |
| 15 |
|
| 16 |
\usepackage{url} |
| 17 |
|
| 18 |
% math abbreviations |
| 19 |
\newcommand{\vek}[1]{\ensuremath{\mathbf{#1}}} |
| 20 |
\newcommand{\mat}[1]{\ensuremath{\mathbf{#1}}} |
| 21 |
\newcommand{\vtau}{\bm{{\tau}}} |
| 22 |
|
| 23 |
\newcommand{\degree}{\ensuremath{^\circ}} |
| 24 |
\newcommand{\degC}{\,\ensuremath{\degree}C} |
| 25 |
\newcommand{\degE}{\ensuremath{\degree}\,E} |
| 26 |
\newcommand{\degS}{\ensuremath{\degree}\,S} |
| 27 |
\newcommand{\degN}{\ensuremath{\degree}\,N} |
| 28 |
\newcommand{\degW}{\ensuremath{\degree}\,W} |
| 29 |
|
| 30 |
% cross reference scheme |
| 31 |
\newcommand{\reffig}[1]{Figure~\ref{fig:#1}} |
| 32 |
\newcommand{\reftab}[1]{Table~\ref{tab:#1}} |
| 33 |
\newcommand{\refapp}[1]{Appendix~\ref{app:#1}} |
| 34 |
\newcommand{\refsec}[1]{Section~\ref{sec:#1}} |
| 35 |
\newcommand{\refeq}[1]{\,(\ref{eq:#1})} |
| 36 |
\newcommand{\refeqs}[2]{\,(\ref{eq:#1})--(\ref{eq:#2})} |
| 37 |
|
| 38 |
\newlength{\stdfigwidth}\setlength{\stdfigwidth}{20pc} |
| 39 |
%\newlength{\stdfigwidth}\setlength{\stdfigwidth}{\columnwidth} |
| 40 |
\newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc} |
| 41 |
%\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc} |
| 42 |
\newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth} |
| 43 |
\newcommand{\fpath}{figs} |
| 44 |
|
| 45 |
% commenting scheme |
| 46 |
\newcommand{\ml}[1]{\textsf{\slshape #1}} |
| 47 |
|
| 48 |
\title{A Dynamic-Thermodynamic Sea Ice Model on an Arakawa C-Grid |
| 49 |
for Ocean Climate Estimation and Sensitivity Studies} |
| 50 |
|
| 51 |
%Alternative title suggested by Chris Hill: |
| 52 |
%\title{A Sea Ice Model Designed for Ocean State Estimation and its |
| 53 |
% Application to Studying Sea Ice Model Dynamics in the Canadian Arctic |
| 54 |
% Archipelago} |
| 55 |
|
| 56 |
\author{Martin Losch, Dimitris Menemenlis, Patrick Heimbach, \\ |
| 57 |
Jean-Michel Campin, and Chris Hill} |
| 58 |
\begin{document} |
| 59 |
|
| 60 |
\maketitle |
| 61 |
|
| 62 |
\input{ceaice_abstract.tex} |
| 63 |
|
| 64 |
\input{ceaice_intro.tex} |
| 65 |
|
| 66 |
\input{ceaice_model.tex} |
| 67 |
|
| 68 |
\input{ceaice_forward.tex} |
| 69 |
|
| 70 |
%\input{ceaice_adjoint.tex} |
| 71 |
|
| 72 |
\input{ceaice_concl.tex} |
| 73 |
|
| 74 |
%\appendix |
| 75 |
%\input{ceaice_appendix.tex} |
| 76 |
|
| 77 |
\paragraph{Acknowledgements} |
| 78 |
We thank Jinlun Zhang for providing the original B-grid code and many |
| 79 |
helpful discussions. ML thanks Elizabeth Hunke for multiple explanations. |
| 80 |
|
| 81 |
This work is a contribution to Estimating the Circulation and Climate of the |
| 82 |
Ocean, Phase II (ECCO2). The ECCO2 project (http://ecco2.org/) is sponsored |
| 83 |
by the NASA Modeling Analysis and Prediction (MAP) program. D. Menemenlis |
| 84 |
carried out this work at the Jet Propulsion Laboratory, California Institute |
| 85 |
of Technology under contract with the National Aeronautics and Space |
| 86 |
Administration. |
| 87 |
|
| 88 |
\bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram,bib/mit_biblio} |
| 89 |
|
| 90 |
\end{document} |
| 91 |
|
| 92 |
%%% Local Variables: |
| 93 |
%%% mode: latex |
| 94 |
%%% TeX-master: t |
| 95 |
%%% End: |
| 96 |
|
| 97 |
|
| 98 |
A Dynamic-Thermodynamic Sea ice Model for Ocean Climate |
| 99 |
Estimation on an Arakawa C-Grid |
| 100 |
|
| 101 |
Introduction |
| 102 |
|
| 103 |
Ice Model: |
| 104 |
Dynamics formulation. |
| 105 |
B-C, LSR, EVP, no-slip, slip |
| 106 |
parallellization |
| 107 |
Thermodynamics formulation. |
| 108 |
0-layer Hibler salinity + snow |
| 109 |
3-layer Winton |
| 110 |
|
| 111 |
Idealized tests |
| 112 |
Funnel Experiments |
| 113 |
Downstream Island tests |
| 114 |
B-grid LSR no-slip |
| 115 |
C-grid LSR no-slip |
| 116 |
C-grid LSR slip |
| 117 |
C-grid EVP no-slip |
| 118 |
C-grid EVP slip |
| 119 |
|
| 120 |
Arctic Setup |
| 121 |
Configuration |
| 122 |
OBCS from cube |
| 123 |
forcing |
| 124 |
1/2 and full resolution |
| 125 |
with a few JFM figs from C-grid LSR no slip |
| 126 |
ice transport through Canadian Archipelago |
| 127 |
thickness distribution |
| 128 |
ice velocity and transport |
| 129 |
|
| 130 |
Arctic forward sensitivity experiments |
| 131 |
B-grid LSR no-slip |
| 132 |
C-grid LSR no-slip |
| 133 |
C-grid LSR slip |
| 134 |
C-grid EVP no-slip |
| 135 |
C-grid EVP slip |
| 136 |
C-grid LSR no-slip + Winton |
| 137 |
speed-performance-accuracy (small) |
| 138 |
ice transport through Canadian Archipelago differences |
| 139 |
thickness distribution differences |
| 140 |
ice velocity and transport differences |
| 141 |
|
| 142 |
Adjoint sensitivity experiment on 1/2-res setup |
| 143 |
Sensitivity of sea ice volume flow through Fram Strait |
| 144 |
*** Sensitivity of sea ice volume flow through Canadian Archipelago |
| 145 |
|
| 146 |
Summary and conluding remarks |