/[MITgcm]/MITgcm_contrib/articles/ceaice/ceaice.tex
ViewVC logotype

Annotation of /MITgcm_contrib/articles/ceaice/ceaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (hide annotations) (download) (as text)
Mon Feb 25 19:30:56 2008 UTC (17 years, 4 months ago) by mlosch
Branch: MAIN
Changes since 1.10: +1 -137 lines
File MIME type: application/x-tex
remove the funnel experiment section

1 mlosch 1.11 % $Header: /u/gcmpack/MITgcm_contrib/articles/ceaice/ceaice.tex,v 1.10 2008/02/25 16:50:56 dimitri Exp $
2 dimitri 1.10 % $Name: $
3 dimitri 1.1 \documentclass[12pt]{article}
4 mlosch 1.4
5 mlosch 1.5 \usepackage[]{graphicx}
6     \usepackage{subfigure}
7 dimitri 1.1
8     \usepackage[round,comma]{natbib}
9 dimitri 1.2 \bibliographystyle{bib/agu04}
10 dimitri 1.1
11     \usepackage{amsmath,amssymb}
12     \newcommand\bmmax{10} \newcommand\hmmax{10}
13     \usepackage{bm}
14    
15     % math abbreviations
16     \newcommand{\vek}[1]{\ensuremath{\mathbf{#1}}}
17     \newcommand{\mat}[1]{\ensuremath{\mathbf{#1}}}
18     \newcommand{\vtau}{\bm{{\tau}}}
19    
20     \newcommand{\degree}{\ensuremath{^\circ}}
21     \newcommand{\degC}{\,\ensuremath{\degree}C}
22     \newcommand{\degE}{\ensuremath{\degree}\,E}
23     \newcommand{\degS}{\ensuremath{\degree}\,S}
24     \newcommand{\degN}{\ensuremath{\degree}\,N}
25     \newcommand{\degW}{\ensuremath{\degree}\,W}
26    
27     % cross reference scheme
28     \newcommand{\reffig}[1]{Figure~\ref{fig:#1}}
29     \newcommand{\reftab}[1]{Table~\ref{tab:#1}}
30     \newcommand{\refapp}[1]{Appendix~\ref{app:#1}}
31     \newcommand{\refsec}[1]{Section~\ref{sec:#1}}
32     \newcommand{\refeq}[1]{\,(\ref{eq:#1})}
33     \newcommand{\refeqs}[2]{\,(\ref{eq:#1})--(\ref{eq:#2})}
34    
35     \newlength{\stdfigwidth}\setlength{\stdfigwidth}{20pc}
36     %\newlength{\stdfigwidth}\setlength{\stdfigwidth}{\columnwidth}
37     \newlength{\mediumfigwidth}\setlength{\mediumfigwidth}{39pc}
38     %\newlength{\widefigwidth}\setlength{\widefigwidth}{39pc}
39     \newlength{\widefigwidth}\setlength{\widefigwidth}{\textwidth}
40 mlosch 1.4 \newcommand{\fpath}{figs}
41    
42     % commenting scheme
43     \newcommand{\ml}[1]{\textsf{\slshape #1}}
44 dimitri 1.1
45     \title{A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
46     Estimation on an Arakawa C-Grid}
47    
48     \author{Martin Losch, Dimitris Menemenlis, Patrick Heimbach, \\
49     Jean-Michel Campin, and Chris Hill}
50     \begin{document}
51    
52     \maketitle
53    
54     \begin{abstract}
55 dimitri 1.10
56     As part of ongoing efforts to obtain a best possible synthesis of most
57     available, global-scale, ocean and sea ice data, dynamic and thermodynamic
58     sea-ice model components have been incorporated in the Massachusetts Institute
59     of Technology general circulation model (MITgcm). Sea-ice dynamics use either
60     a visco-plastic rheology solved with a line successive relaxation (LSR)
61     technique, reformulated on an Arakawa C-grid in order to match the oceanic and
62     atmospheric grids of the MITgcm, and modified to permit efficient and accurate
63     automatic differentiation of the coupled ocean and sea-ice model
64     configurations.
65    
66 dimitri 1.1 \end{abstract}
67    
68     \section{Introduction}
69     \label{sec:intro}
70    
71     more blabla
72    
73     \section{Model}
74     \label{sec:model}
75    
76     Traditionally, probably for historical reasons and the ease of
77     treating the Coriolis term, most standard sea-ice models are
78     discretized on Arakawa-B-grids \citep[e.g.,][]{hibler79, harder99,
79     kreyscher00, zhang98, hunke97}. From the perspective of coupling a
80     sea ice-model to a C-grid ocean model, the exchange of fluxes of heat
81     and fresh-water pose no difficulty for a B-grid sea-ice model
82     \citep[e.g.,][]{timmermann02a}. However, surface stress is defined at
83     velocities points and thus needs to be interpolated between a B-grid
84     sea-ice model and a C-grid ocean model. While the smoothing implicitly
85     associated with this interpolation may mask grid scale noise, it may
86     in two-way coupling lead to a computational mode as will be shown. By
87     choosing a C-grid for the sea-ice model, we circumvene this difficulty
88     altogether and render the stress coupling as consistent as the
89     buoyancy coupling.
90    
91     A further advantage of the C-grid formulation is apparent in narrow
92     straits. In the limit of only one grid cell between coasts there is no
93     flux allowed for a B-grid (with no-slip lateral boundary counditions),
94     whereas the C-grid formulation allows a flux of sea-ice through this
95     passage for all types of lateral boundary conditions. We (will)
96     demonstrate this effect in the Candian archipelago.
97    
98     \subsection{Dynamics}
99     \label{sec:dynamics}
100    
101     The momentum equations of the sea-ice model are standard with
102     \begin{equation}
103     \label{eq:momseaice}
104     m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
105     \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
106     \end{equation}
107     where $\vek{u} = u\vek{i}+v\vek{j}$ is the ice velocity vectory, $m$
108     the ice mass per unit area, $f$ the Coriolis parameter, $g$ is the
109     gravity accelation, $\nabla\phi$ is the gradient (tilt) of the sea
110     surface height potential beneath the ice. $\phi$ is the sum of
111     atmpheric pressure $p_{a}$ and loading due to ice and snow
112     $(m_{i}+m_{s})g$. $\vtau_{air}$ and $\vtau_{ocean}$ are the wind and
113     ice-ocean stresses, respectively. $\vek{F}$ is the interaction force
114     and $\vek{i}$, $\vek{j}$, and $\vek{k}$ are the unit vectors in the
115     $x$, $y$, and $z$ directions. Advection of sea-ice momentum is
116     neglected. The wind and ice-ocean stress terms are given by
117     \begin{align*}
118     \vtau_{air} =& \rho_{air} |\vek{U}_{air}|R_{air}(\vek{U}_{air}) \\
119     \vtau_{ocean} =& \rho_{ocean} |\vek{U}_{ocean}-\vek{u}|
120     R_{ocean}(\vek{U}_{ocean}-\vek{u}), \\
121     \end{align*}
122     where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
123     and surface currents of the ocean, respectively. $C_{air/ocean}$ are
124     air and ocean drag coefficients, $\rho_{air/ocean}$ reference
125     densities, and $R_{air/ocean}$ rotation matrices that act on the
126     wind/current vectors. $\vek{F} = \nabla\cdot\sigma$ is the divergence
127     of the interal stress tensor $\sigma_{ij}$.
128    
129     For an isotropic system this stress tensor can be related to the ice
130     strain rate and strength by a nonlinear viscous-plastic (VP)
131     constitutive law \citep{hibler79, zhang98}:
132     \begin{equation}
133     \label{eq:vpequation}
134     \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
135     + \left[\zeta(\dot{\epsilon}_{ij},P) -
136     \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
137     - \frac{P}{2}\delta_{ij}.
138     \end{equation}
139     The ice strain rate is given by
140     \begin{equation*}
141     \dot{\epsilon}_{ij} = \frac{1}{2}\left(
142     \frac{\partial{u_{i}}}{\partial{x_{j}}} +
143     \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
144     \end{equation*}
145 mlosch 1.5 The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
146     both thickness $h$ and compactness (concentration) $c$:
147 mlosch 1.4 \begin{equation}
148 mlosch 1.5 P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
149 mlosch 1.9 \label{eq:icestrength}
150 mlosch 1.4 \end{equation}
151     with the constants $P^{*}$ and $C^{*}$. The nonlinear bulk and shear
152     viscosities $\eta$ and $\zeta$ are functions of ice strain rate
153     invariants and ice strength such that the principal components of the
154     stress lie on an elliptical yield curve with the ratio of major to
155     minor axis $e$ equal to $2$; they are given by:
156 dimitri 1.1 \begin{align*}
157 mlosch 1.5 \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
158     \zeta_{\max}\right) \\
159     \eta =& \frac{\zeta}{e^2} \\
160 dimitri 1.1 \intertext{with the abbreviation}
161     \Delta = & \left[
162     \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
163     (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
164     2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
165     \right]^{-\frac{1}{2}}
166     \end{align*}
167 mlosch 1.5 The bulk viscosities are bounded above by imposing both a minimum
168     $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ (for numerical reasons) and a
169     maximum $\zeta_{\max} = P_{\max}/\Delta^*$, where
170     $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. For stress
171     tensor compuation the replacement pressure $P = 2\,\Delta\zeta$
172     \citep{hibler95} is used so that the stress state always lies on the
173     elliptic yield curve by definition.
174    
175 mlosch 1.6 In the so-called truncated ellipse method the shear viscosity $\eta$
176     is capped to suppress any tensile stress \citep{hibler97, geiger98}:
177     \begin{equation}
178     \label{eq:etatem}
179     \eta = \min(\frac{\zeta}{e^2}
180     \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
181     {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
182     +4\dot{\epsilon}_{12}^2}}
183     \end{equation}
184    
185 dimitri 1.1 In the current implementation, the VP-model is integrated with the
186     semi-implicit line successive over relaxation (LSOR)-solver of
187     \citet{zhang98}, which allows for long time steps that, in our case,
188     is limited by the explicit treatment of the Coriolis term. The
189     explicit treatment of the Coriolis term does not represent a severe
190     limitation because it restricts the time step to approximately the
191     same length as in the ocean model where the Coriolis term is also
192     treated explicitly.
193    
194     \citet{hunke97}'s introduced an elastic contribution to the strain
195     rate elatic-viscous-plastic in order to regularize
196     Eq.\refeq{vpequation} in such a way that the resulting
197     elatic-viscous-plastic (EVP) and VP models are identical at steady
198     state,
199     \begin{equation}
200     \label{eq:evpequation}
201     \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
202     \frac{1}{2\eta}\sigma_{ij}
203     + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
204     + \frac{P}{4\zeta}\delta_{ij}
205     = \dot{\epsilon}_{ij}.
206     \end{equation}
207     %In the EVP model, equations for the components of the stress tensor
208     %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
209     %used and compared the present sea-ice model study.
210     The EVP-model uses an explicit time stepping scheme with a short
211     timestep. According to the recommendation of \citet{hunke97}, the
212     EVP-model is stepped forward in time 120 times within the physical
213     ocean model time step (although this parameter is under debate), to
214     allow for elastic waves to disappear. Because the scheme does not
215     require a matrix inversion it is fast in spite of the small timestep
216     \citep{hunke97}. For completeness, we repeat the equations for the
217     components of the stress tensor $\sigma_{1} =
218     \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
219     $\sigma_{12}$. Introducing the divergence $D_D =
220     \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
221     and shearing strain rates, $D_T =
222     \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
223     2\dot{\epsilon}_{12}$, respectively and using the above abbreviations,
224     the equations can be written as:
225     \begin{align}
226     \label{eq:evpstresstensor1}
227     \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
228     \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
229     \label{eq:evpstresstensor2}
230     \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
231     &= \frac{P}{2T\Delta} D_T \\
232     \label{eq:evpstresstensor12}
233     \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
234     &= \frac{P}{4T\Delta} D_S
235     \end{align}
236     Here, the elastic parameter $E$ is redefined in terms of a damping timescale
237     $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
238     $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
239     the external (long) timestep $\Delta{t}$. \citet{hunke97} recommend
240     $E_{0} = \frac{1}{3}$.
241    
242     For details of the spatial discretization, the reader is referred to
243     \citet{zhang98, zhang03}. Our discretization differs only (but
244     importantly) in the underlying grid, namely the Arakawa C-grid, but is
245     otherwise straightforward. The EVP model in particular is discretized
246     naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
247     center points and $\sigma_{12}$ on the corner (or vorticity) points of
248     the grid. With this choice all derivatives are discretized as central
249     differences and averaging is only involved in computing $\Delta$ and
250     $P$ at vorticity points.
251    
252     For a general curvilinear grid, one needs in principle to take metric
253     terms into account that arise in the transformation a curvilinear grid
254     on the sphere. However, for now we can neglect these metric terms
255     because they are very small on the cubed sphere grids used in this
256     paper; in particular, only near the edges of the cubed sphere grid, we
257     expect them to be non-zero, but these edges are at approximately
258     35\degS\ or 35\degN\ which are never covered by sea-ice in our
259     simulations. Everywhere else the coordinate system is locally nearly
260     cartesian. However, for last-glacial-maximum or snowball-earth-like
261     simulations the question of metric terms needs to be reconsidered.
262     Either, one includes these terms as in \citet{zhang03}, or one finds a
263     vector-invariant formulation fo the sea-ice internal stress term that
264     does not require any metric terms, as it is done in the ocean dynamics
265     of the MITgcm \citep{adcroft04:_cubed_sphere}.
266    
267     Moving sea ice exerts a stress on the ocean which is the opposite of
268     the stress $\vtau_{ocean}$ in Eq.\refeq{momseaice}. This stess is
269     applied directly to the surface layer of the ocean model. An
270     alternative ocean stress formulation is given by \citet{hibler87}.
271     Rather than applying $\vtau_{ocean}$ directly, the stress is derived
272     from integrating over the ice thickness to the bottom of the oceanic
273     surface layer. In the resulting equation for the \emph{combined}
274     ocean-ice momentum, the interfacial stress cancels and the total
275     stress appears as the sum of windstress and divergence of internal ice
276     stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
277     Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
278     now the velocity in the surface layer of the ocean that is used to
279     advect tracers, is really an average over the ocean surface
280     velocity and the ice velocity leading to an inconsistency as the ice
281     temperature and salinity are different from the oceanic variables.
282    
283     Sea ice distributions are characterized by sharp gradients and edges.
284     For this reason, we employ a positive 3rd-order advection scheme
285     \citep{hundsdorfer94} for the thermodynamic variables discussed in the
286     next section.
287    
288     \subparagraph{boundary conditions: no-slip, free-slip, half-slip}
289    
290     \begin{itemize}
291     \item transition from existing B-Grid to C-Grid
292     \item boundary conditions: no-slip, free-slip, half-slip
293     \item fancy (multi dimensional) advection schemes
294     \item VP vs.\ EVP \citep{hunke97}
295     \item ocean stress formulation \citep{hibler87}
296     \end{itemize}
297    
298     \subsection{Thermodynamics}
299     \label{sec:thermodynamics}
300    
301     In the original formulation the sea ice model \citep{menemenlis05}
302     uses simple thermodynamics following the appendix of
303     \citet{semtner76}. This formulation does not allow storage of heat
304     (heat capacity of ice is zero, and this type of model is often refered
305     to as a ``zero-layer'' model). Upward heat flux is parameterized
306     assuming a linear temperature profile and together with a constant ice
307     conductivity. It is expressed as $(K/h)(T_{w}-T_{0})$, where $K$ is
308     the ice conductivity, $h$ the ice thickness, and $T_{w}-T_{0}$ the
309     difference between water and ice surface temperatures. The surface
310     heat budget is computed in a similar way to that of
311     \citet{parkinson79} and \citet{manabe79}.
312    
313     There is considerable doubt about the reliability of such a simple
314     thermodynamic model---\citet{semtner84} found significant errors in
315     phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
316     such models---, so that today many sea ice models employ more complex
317     thermodynamics. A popular thermodynamics model of \citet{winton00} is
318     based on the 3-layer model of \citet{semtner76} and treats brine
319     content by means of enthalphy conservation. This model requires in
320     addition to ice-thickness and compactness (fractional area) additional
321     state variables to be advected by ice velocities, namely enthalphy of
322     the two ice layers and the thickness of the overlying snow layer.
323    
324 mlosch 1.9
325 dimitri 1.1 \subsection{C-grid}
326     \begin{itemize}
327     \item no-slip vs. free-slip for both lsr and evp;
328     "diagnostics" to look at and use for comparison
329     \begin{itemize}
330     \item ice transport through Fram Strait/Denmark Strait/Davis
331     Strait/Bering strait (these are general)
332     \item ice transport through narrow passages, e.g.\ Nares-Strait
333     \end{itemize}
334     \item compare different advection schemes (if lsr turns out to be more
335     effective, then with lsr otherwise I prefer evp), eg.
336     \begin{itemize}
337     \item default 2nd-order with diff1=0.002
338     \item 1st-order upwind with diff1=0.
339     \item DST3FL (SEAICEadvScheme=33 with diff1=0., should work, works for me)
340     \item 2nd-order wit flux limiter (SEAICEadvScheme=77 with diff1=0.)
341     \end{itemize}
342     That should be enough. Here, total ice mass and location of ice edge
343     is interesting. However, this comparison can be done in an idealized
344     domain, may not require full Arctic Domain?
345     \item
346     Do a little study on the parameters of LSR and EVP
347     \begin{enumerate}
348     \item convergence of LSR, how many iterations do you need to get a
349     true elliptic yield curve
350     \item vary deltaTevp and the relaxation parameter for EVP and see when
351     the EVP solution breaks down (relative to the forcing time scale).
352     For this, it is essential that the evp solver gives use "stripeless"
353     solutions, that is your dtevp = 1sec solutions/or 10sec solutions
354     with SEAICE\_evpDampC = 615.
355     \end{enumerate}
356     \end{itemize}
357    
358     \section{Forward sensitivity experiments}
359     \label{sec:forward}
360    
361     A second series of forward sensitivity experiments have been carried out on an
362     Arctic Ocean domain with open boundaries. Once again the objective is to
363     compare the old B-grid LSR dynamic solver with the new C-grid LSR and EVP
364     solvers. One additional experiment is carried out to illustrate the
365     differences between the two main options for sea ice thermodynamics in the MITgcm.
366    
367     \subsection{Arctic Domain with Open Boundaries}
368     \label{sec:arctic}
369    
370 mlosch 1.6 The Arctic domain of integration is illustrated in Fig.~\ref{???}. It
371     is carved out from, and obtains open boundary conditions from, the
372     global cubed-sphere configuration of the Estimating the Circulation
373     and Climate of the Ocean, Phase II (ECCO2) project
374     \citet{menemenlis05}. The domain size is 420 by 384 grid boxes
375     horizontally with mean horizontal grid spacing of 18 km.
376 dimitri 1.1
377     There are 50 vertical levels ranging in thickness from 10 m near the surface
378     to approximately 450 m at a maximum model depth of 6150 m. Bathymetry is from
379     the National Geophysical Data Center (NGDC) 2-minute gridded global relief
380     data (ETOPO2) and the model employs the partial-cell formulation of
381 mlosch 1.6 \citet{adcroft97:_shaved_cells}, which permits accurate representation of the bathymetry. The
382 dimitri 1.1 model is integrated in a volume-conserving configuration using a finite volume
383     discretization with C-grid staggering of the prognostic variables. In the
384 mlosch 1.6 ocean, the non-linear equation of state of \citet{jackett95}. The ocean model is
385 dimitri 1.1 coupled to a sea-ice model described hereinabove.
386    
387 mlosch 1.6 This particular ECCO2 simulation is initialized from rest using the
388     January temperature and salinity distribution from the World Ocean
389     Atlas 2001 (WOA01) [Conkright et al., 2002] and it is integrated for
390     32 years prior to the 1996--2001 period discussed in the study. Surface
391     boundary conditions are from the National Centers for Environmental
392     Prediction and the National Center for Atmospheric Research
393     (NCEP/NCAR) atmospheric reanalysis [Kistler et al., 2001]. Six-hourly
394     surface winds, temperature, humidity, downward short- and long-wave
395     radiations, and precipitation are converted to heat, freshwater, and
396     wind stress fluxes using the \citet{large81, large82} bulk formulae.
397     Shortwave radiation decays exponentially as per Paulson and Simpson
398     [1977]. Additionally the time-mean river run-off from Large and Nurser
399     [2001] is applied and there is a relaxation to the monthly-mean
400     climatological sea surface salinity values from WOA01 with a
401     relaxation time scale of 3 months. Vertical mixing follows
402     \citet{large94} with background vertical diffusivity of
403     $1.5\times10^{-5}\text{\,m$^{2}$\,s$^{-1}$}$ and viscosity of
404     $10^{-3}\text{\,m$^{2}$\,s$^{-1}$}$. A third order, direct-space-time
405     advection scheme with flux limiter is employed \citep{hundsdorfer94}
406     and there is no explicit horizontal diffusivity. Horizontal viscosity
407     follows \citet{lei96} but
408     modified to sense the divergent flow as per Fox-Kemper and Menemenlis
409     [in press]. Shortwave radiation decays exponentially as per Paulson
410     and Simpson [1977]. Additionally, the time-mean runoff of Large and
411     Nurser [2001] is applied near the coastline and, where there is open
412     water, there is a relaxation to monthly-mean WOA01 sea surface
413     salinity with a time constant of 45 days.
414 dimitri 1.1
415     Open water, dry
416     ice, wet ice, dry snow, and wet snow albedo are, respectively, 0.15, 0.85,
417     0.76, 0.94, and 0.8.
418    
419     \begin{itemize}
420     \item Configuration
421     \item OBCS from cube
422     \item forcing
423     \item 1/2 and full resolution
424     \item with a few JFM figs from C-grid LSR no slip
425     ice transport through Canadian Archipelago
426     thickness distribution
427     ice velocity and transport
428     \end{itemize}
429    
430     \begin{itemize}
431     \item Arctic configuration
432     \item ice transport through straits and near boundaries
433     \item focus on narrow straits in the Canadian Archipelago
434     \end{itemize}
435    
436     \begin{itemize}
437     \item B-grid LSR no-slip
438     \item C-grid LSR no-slip
439     \item C-grid LSR slip
440     \item C-grid EVP no-slip
441     \item C-grid EVP slip
442 mlosch 1.6 \item C-grid LSR + TEM (truncated ellipse method, no tensile stress, new flag)
443 dimitri 1.1 \item C-grid LSR no-slip + Winton
444     \item speed-performance-accuracy (small)
445     ice transport through Canadian Archipelago differences
446     thickness distribution differences
447     ice velocity and transport differences
448     \end{itemize}
449    
450     We anticipate small differences between the different models due to:
451     \begin{itemize}
452     \item advection schemes: along the ice-edge and regions with large
453     gradients
454 mlosch 1.6 \item C-grid: less transport through narrow straits for no slip
455     conditons, more for free slip
456 dimitri 1.1 \item VP vs.\ EVP: speed performance, accuracy?
457     \item ocean stress: different water mass properties beneath the ice
458     \end{itemize}
459    
460     \section{Adjoint sensiivities of the MITsim}
461    
462     \subsection{The adjoint of MITsim}
463    
464     The ability to generate tangent linear and adjoint model components
465     of the MITsim has been a main design task.
466     For the ocean the adjoint capability has proven to be an
467     invaluable tool for sensitivity analysis as well as state estimation.
468     In short, the adjoint enables very efficient computation of the gradient
469     of scalar-valued model diagnostics (called cost function or objective function)
470     with respect to many model "variables".
471     These variables can be two- or three-dimensional fields of initial
472     conditions, model parameters such as mixing coefficients, or
473     time-varying surface or lateral (open) boundary conditions.
474     When combined, these variables span a potentially high-dimensional
475     (e.g. O(10$^8$)) so-called control space. Performing parameter perturbations
476     to assess model sensitivities quickly becomes prohibitive at these scales.
477     Alternatively, (time-varying) sensitivities of the objective function
478     to any element of the control space can be computed very efficiently in
479     one single adjoint
480     model integration, provided an efficient adjoint model is available.
481    
482     [REFERENCES]
483    
484    
485     The adjoint operator (ADM) is the transpose of the tangent linear operator (TLM)
486     of the full (in general nonlinear) forward model, i.e. the MITsim.
487     The TLM maps perturbations of elements of the control space
488     (e.g. initial ice thickness distribution)
489     via the model Jacobian
490     to a perturbation in the objective function
491     (e.g. sea-ice export at the end of the integration interval).
492     \textit{Tangent} linearity ensures that the derivatives are evaluated
493     with respect to the underlying model trajectory at each point in time.
494     This is crucial for nonlinear trajectories and the presence of different
495     regimes (e.g. effect of the seaice growth term at or away from the
496     freezing point of the ocean surface).
497     Ensuring tangent linearity can be easily achieved by integrating
498     the full model in sync with the TLM to provide the underlying model state.
499     Ensuring \textit{tangent} adjoints is equally crucial, but much more
500     difficult to achieve because of the reverse nature of the integration:
501     the adjoint accumulates sensitivities backward in time,
502     starting from a unit perturbation of the objective function.
503     The adjoint model requires the model state in reverse order.
504     This presents one of the major complications in deriving an
505     exact, i.e. \textit{tangent} adjoint model.
506    
507     Following closely the development and maintenance of TLM and ADM
508     components of the MITgcm we have relied heavily on the
509     autmomatic differentiation (AD) tool
510     "Transformation of Algorithms in Fortran" (TAF)
511     developed by Fastopt (Giering and Kaminski, 1998)
512     to derive TLM and ADM code of the MITsim.
513     Briefly, the nonlinear parent model is fed to the AD tool which produces
514     derivative code for the specified control space and objective function.
515     Following this approach has (apart from its evident success)
516     several advantages:
517     (1) the adjoint model is the exact adjoint operator of the parent model,
518     (2) the adjoint model can be kept up to date with respect to ongoing
519     development of the parent model, and adjustments to the parent model
520     to extend the automatically generated adjoint are incremental changes
521     only, rather than extensive re-developments,
522     (3) the parallel structure of the parent model is preserved
523     by the adjoint model, ensuring efficient use in high performance
524     computing environments.
525    
526     Some initial code adjustments are required to support dependency analysis
527     of the flow reversal and certain language limitations which may lead
528     to irreducible flow graphs (e.g. GOTO statements).
529     The problem of providing the required model state in reverse order
530     at the time of evaluating nonlinear or conditional
531     derivatives is solved via balancing
532     storing vs. recomputation of the model state in a multi-level
533     checkpointing loop.
534     Again, an initial code adjustment is required to support TAFs
535     checkpointing capability.
536 mlosch 1.6 The code adjustments are sufficiently simple so as not to cause
537 dimitri 1.1 major limitations to the full nonlinear parent model.
538     Once in place, an adjoint model of a new model configuration
539     may be derived in about 10 minutes.
540    
541     [HIGHLIGHT COUPLED NATURE OF THE ADJOINT!]
542    
543     \subsection{Special considerations}
544    
545     * growth term(?)
546    
547     * small active denominators
548    
549     * dynamic solver (implicit function theorem)
550    
551     * approximate adjoints
552    
553    
554     \subsection{An example: sensitivities of sea-ice export through Fram Strait}
555    
556     We demonstrate the power of the adjoint method
557     in the context of investigating sea-ice export sensitivities through Fram Strait
558     (for details of this study see Heimbach et al., 2007).
559 mlosch 1.6 %\citep[for details of this study see][]{heimbach07}. %Heimbach et al., 2007).
560 dimitri 1.1 The domain chosen is a coarsened version of the Arctic face of the
561     high-resolution cubed-sphere configuration of the ECCO2 project
562 mlosch 1.6 \citep[see][]{menemenlis05}. It covers the entire Arctic,
563 dimitri 1.1 extends into the North Pacific such as to cover the entire
564     ice-covered regions, and comprises parts of the North Atlantic
565     down to XXN to enable analysis of remote influences of the
566     North Atlantic current to sea-ice variability and export.
567     The horizontal resolution varies between XX and YY km
568     with 50 unevenly spaced vertical levels.
569     The adjoint models run efficiently on 80 processors
570     (benchmarks have been performed both on an SGI Altix as well as an
571     IBM SP5 at NASA/ARC).
572    
573 mlosch 1.6 Following a 1-year spinup, the model has been integrated for four
574     years between 1992 and 1995. It is forced using realistic 6-hourly
575     NCEP/NCAR atmospheric state variables. Over the open ocean these are
576     converted into air-sea fluxes via the bulk formulae of
577     \citet{large04}. Derivation of air-sea fluxes in the presence of
578     sea-ice is handled by the ice model as described in \refsec{model}.
579 dimitri 1.1 The objective function chosen is sea-ice export through Fram Strait
580 mlosch 1.6 computed for December 1995. The adjoint model computes sensitivities
581     to sea-ice export back in time from 1995 to 1992 along this
582     trajectory. In principle all adjoint model variable (i.e., Lagrange
583     multipliers) of the coupled ocean/sea-ice model are available to
584     analyze the transient sensitivity behaviour of the ocean and sea-ice
585     state. Over the open ocean, the adjoint of the bulk formula scheme
586     computes sensitivities to the time-varying atmospheric state. Over
587     ice-covered parts, the sea-ice adjoint converts surface ocean
588     sensitivities to atmospheric sensitivities.
589    
590     \reffig{4yradjheff}(a--d) depict sensitivities of sea-ice export
591     through Fram Strait in December 1995 to changes in sea-ice thickness
592     12, 24, 36, 48 months back in time. Corresponding sensitivities to
593     ocean surface temperature are depicted in
594     \reffig{4yradjthetalev1}(a--d). The main characteristics is
595     consistency with expected advection of sea-ice over the relevant time
596     scales considered. The general positive pattern means that an
597     increase in sea-ice thickness at location $(x,y)$ and time $t$ will
598     increase sea-ice export through Fram Strait at time $T_e$. Largest
599     distances from Fram Strait indicate fastest sea-ice advection over the
600     time span considered. The ice thickness sensitivities are in close
601     correspondence to ocean surface sentivitites, but of opposite sign.
602     An increase in temperature will incur ice melting, decrease in ice
603     thickness, and therefore decrease in sea-ice export at time $T_e$.
604 dimitri 1.1
605     The picture is fundamentally different and much more complex
606     for sensitivities to ocean temperatures away from the surface.
607 mlosch 1.6 \reffig{4yradjthetalev10??}(a--d) depicts ice export sensitivities to
608 dimitri 1.1 temperatures at roughly 400 m depth.
609     Primary features are the effect of the heat transport of the North
610     Atlantic current which feeds into the West Spitsbergen current,
611     the circulation around Svalbard, and ...
612    
613     \begin{figure}[t!]
614     \centerline{
615     \subfigure[{\footnotesize -12 months}]
616 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim072_cmax2.0E+02.eps}}
617 dimitri 1.1 %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
618     %
619     \subfigure[{\footnotesize -24 months}]
620 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim145_cmax2.0E+02.eps}}
621 dimitri 1.1 }
622    
623     \centerline{
624     \subfigure[{\footnotesize
625     -36 months}]
626 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim218_cmax2.0E+02.eps}}
627 dimitri 1.1 %
628     \subfigure[{\footnotesize
629     -48 months}]
630 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJheff_arc_lev1_tim292_cmax2.0E+02.eps}}
631 dimitri 1.1 }
632     \caption{Sensitivity of sea-ice export through Fram Strait in December 2005 to
633     sea-ice thickness at various prior times.
634     \label{fig:4yradjheff}}
635     \end{figure}
636    
637    
638     \begin{figure}[t!]
639     \centerline{
640     \subfigure[{\footnotesize -12 months}]
641 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim072_cmax5.0E+01.eps}}
642 dimitri 1.1 %\includegraphics*[width=.3\textwidth]{H_c.bin_res_100_lev1.pdf}
643     %
644     \subfigure[{\footnotesize -24 months}]
645 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim145_cmax5.0E+01.eps}}
646 dimitri 1.1 }
647    
648     \centerline{
649     \subfigure[{\footnotesize
650     -36 months}]
651 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim218_cmax5.0E+01.eps}}
652 dimitri 1.1 %
653     \subfigure[{\footnotesize
654     -48 months}]
655 mlosch 1.4 {\includegraphics*[width=0.44\linewidth]{\fpath/run_4yr_ADJtheta_arc_lev1_tim292_cmax5.0E+01.eps}}
656 dimitri 1.1 }
657 mlosch 1.6 \caption{Same as \reffig{4yradjheff} but for sea surface temperature
658 dimitri 1.1 \label{fig:4yradjthetalev1}}
659     \end{figure}
660    
661    
662    
663     \section{Discussion and conclusion}
664     \label{sec:concl}
665    
666     The story of the paper could be:
667     B-grid ice model + C-grid ocean model does not work properly for us,
668     therefore C-grid ice model with advantages:
669     \begin{enumerate}
670     \item stress coupling simpler (no interpolation required)
671     \item different boundary conditions
672     \item advection schemes carry over trivially from main code
673     \end{enumerate}
674     LSR/EVP solutions are similar with appropriate bcs, evp parameters as
675     a function of forcing time scale (when does VP solution break
676     down). Same for LSR solver, provided that it works (o:
677     Which scheme is more efficient for the resolution/time stepping
678     parameters that we use here. What about other resolutions?
679    
680     \paragraph{Acknowledgements}
681     We thank Jinlun Zhang for providing the original B-grid code and many
682 mlosch 1.6 helpful discussions. ML thanks Elizabeth Hunke for multiple explanations.
683 dimitri 1.1
684 dimitri 1.7 \bibliography{bib/journal_abrvs,bib/seaice,bib/genocean,bib/maths,bib/mitgcmuv,bib/fram}
685 dimitri 1.1
686     \end{document}
687    
688     %%% Local Variables:
689     %%% mode: latex
690     %%% TeX-master: t
691     %%% End:
692 mlosch 1.4
693    
694     A Dynamic-Thermodynamic Sea ice Model for Ocean Climate
695     Estimation on an Arakawa C-Grid
696    
697     Introduction
698    
699     Ice Model:
700     Dynamics formulation.
701     B-C, LSR, EVP, no-slip, slip
702     parallellization
703     Thermodynamics formulation.
704     0-layer Hibler salinity + snow
705     3-layer Winton
706    
707     Idealized tests
708     Funnel Experiments
709     Downstream Island tests
710     B-grid LSR no-slip
711     C-grid LSR no-slip
712     C-grid LSR slip
713     C-grid EVP no-slip
714     C-grid EVP slip
715    
716     Arctic Setup
717     Configuration
718     OBCS from cube
719     forcing
720     1/2 and full resolution
721     with a few JFM figs from C-grid LSR no slip
722     ice transport through Canadian Archipelago
723     thickness distribution
724     ice velocity and transport
725    
726     Arctic forward sensitivity experiments
727     B-grid LSR no-slip
728     C-grid LSR no-slip
729     C-grid LSR slip
730     C-grid EVP no-slip
731     C-grid EVP slip
732     C-grid LSR no-slip + Winton
733     speed-performance-accuracy (small)
734     ice transport through Canadian Archipelago differences
735     thickness distribution differences
736     ice velocity and transport differences
737    
738     Adjoint sensitivity experiment on 1/2-res setup
739     Sensitivity of sea ice volume flow through Fram Strait
740     *** Sensitivity of sea ice volume flow through Canadian Archipelago
741    
742     Summary and conluding remarks

  ViewVC Help
Powered by ViewVC 1.1.22