| 1 |
edhill |
1.1 |
% |
| 2 |
|
|
% function [XZ,YZ,ZETAr,ZETAp] = calc_vort(U,V,DX,DY,Ymin) |
| 3 |
|
|
% |
| 4 |
|
|
% Computes `vertical' component of |
| 5 |
|
|
% the planetary and relative vorticity |
| 6 |
|
|
% ZETAp(XZ,YZ) and ZETAr(XZ,YZ) from |
| 7 |
|
|
% (U,V) on a C-grid (XU,YU) (XV,YV) |
| 8 |
|
|
% |
| 9 |
|
|
% Ymin is the southern latitude (negative, in degree) |
| 10 |
|
|
% DX is the longitudinal resolution (in degree) |
| 11 |
|
|
% DY is the latitudinal resolution (in degree) |
| 12 |
|
|
% |
| 13 |
|
|
% YZ has NY-1 component. i.e. ZETAr and ZETAp |
| 14 |
|
|
% are not computed on the southern boundary |
| 15 |
|
|
% (at Ymin where V=0) |
| 16 |
|
|
% |
| 17 |
|
|
% (c) acz, Nov. 2002 |
| 18 |
|
|
|
| 19 |
|
|
|
| 20 |
|
|
function [XZ,YZ,ZETAr,ZETAp] = calc_vort(U,V,DX,DY,Ymin) |
| 21 |
|
|
|
| 22 |
|
|
% C-grid |
| 23 |
|
|
% |
| 24 |
|
|
[NX NY] = size(U); %or V |
| 25 |
|
|
XU = [0:DX:(DX*NX-DX)]; |
| 26 |
|
|
XV = XU + DX/2; |
| 27 |
|
|
YU = [(Ymin+DY/2):DY:(-Ymin-DY/2)]; |
| 28 |
|
|
YV = [Ymin:DY:-Ymin-DY]; |
| 29 |
|
|
|
| 30 |
|
|
% Calculate Vorticity |
| 31 |
|
|
% |
| 32 |
|
|
ZETAr = NaN * ones(NX,NY-1); |
| 33 |
|
|
ZETAp = NaN * ones(NX,NY-1); |
| 34 |
|
|
XZ = XU; |
| 35 |
|
|
YZ = YV(2:end); |
| 36 |
|
|
|
| 37 |
|
|
RADIUS = 6371 * 1000; |
| 38 |
|
|
OMEGA = 2 * pi / (24 * 3600); |
| 39 |
|
|
|
| 40 |
|
|
for j = 1:NY-1 |
| 41 |
|
|
|
| 42 |
|
|
for i = 2:NX |
| 43 |
|
|
dy = RADIUS * DY * pi/180; |
| 44 |
|
|
dxN = RADIUS * cos(YU(j+1)*pi/180) * DX * pi/180; |
| 45 |
|
|
dxS = RADIUS * cos(YU(j)*pi/180) * DX * pi/180; |
| 46 |
|
|
h = sqrt( dy^2 - 0.25*(dxS-dxN)^2 ); |
| 47 |
|
|
area = 0.5 * h * (dxS + dxN); %Formule du Trapeze |
| 48 |
|
|
ZETAr(i,j) = - (dy*V(i-1,j+1) + dxN*U(i,j+1) - dy*V(i,j+1) - dxS*U(i,j)) / area; |
| 49 |
|
|
ZETAp(i,j) = 2 * OMEGA * sin(YZ(j)*pi/180); |
| 50 |
|
|
end |
| 51 |
|
|
|
| 52 |
|
|
ZETAr(1,j) = - (dy*V(NX,j+1) + dxN*U(1,j+1) - dy*V(1,j+1) - dxS*U(1,j)) / area; |
| 53 |
|
|
ZETAp(1,j) = 2 * OMEGA * sin(YZ(j)*pi/180); |
| 54 |
|
|
|
| 55 |
|
|
end |
| 56 |
|
|
|