% % function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) % % Computes horizontal advection of scalar T % on the XT, YT (physics) grid at a given vertical level. % NB: (T,U,V) are 2-D fields % % (U,V) on a C-grid (XU,YU) (XV,YV) % NB: The way it is computed is consistent with % the flux form used by MIT-GCM (i.e. if % T DIV is added one recovers the flux form) % % Ymin is the southern latitude (negative, in degree) % DX is the longitudinal resolution (in degree) % DY is the latitudinal resolution (in degree) % % (c) acz, Jul. 2003 function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) % C-grid % [NX NY] = size(U); %or V XU = [0:DX:(DX*NX-DX)]; XV = XU + DX/2; YU = [(Ymin+DY/2):DY:(-Ymin-DY/2)]; YV = [Ymin:DY:-Ymin-DY]; XT = XV; YT = YU; % Constants RADIUS = 6371 * 1000; DYG = RADIUS * DY * pi/180; DXG = RADIUS * DX * pi/180; % Calculate zonal advection on U-grid advu = zeros(NX,NY); for i = 1:NX-1 advu(i+1,:) = U(i+1,:) .* (T(i+1,:)-T(i,:)); end advu(1,:) = U(1,:) .* (T(1,:)-T(NX,:)); % Average advu on T-grid advuTG = zeros(NX,NY); AG = cos(YT*pi/180) * DYG * DXG; for i = 1:NX-1 advuTG(i,:) = DYG*( advu(i,:)+advu(i+1,:) ) ./ (2*AG); end advuTG(NX,:) = DYG*( advu(NX,:)+advu(1,:) ) ./ (2*AG); % Calculate meridional advection on V-grid advv = zeros(NX,NY); %note advv(:,1) = 0 because v(:,1)=0 for j = 2:NY advv(:,j) = V(:,j) .* (T(:,j)-T(:,j-1)); end % Average advv on T-grid advvTG = zeros(NX,NY); for j = 1:NY-1 AG(j) = DYG * DXG * ( cos(YV(j+1)*pi/180)+cos(YV(j)*pi/180) )/2; end AG(NY) = DYG * DXG * ( cos((YV(NY)+DY)*pi/180)+cos(YV(NY)*pi/180) )/2; DDXG = DXG * cos((YV+DY)*pi/180); for j = 1:NY-1 advvTG(:,j) = DDXG(j)*( advv(:,j)+advv(:,j+1) ) ./ (2*AG(j)); end advvTG(:,NY) = DDXG(NY)*( advv(:,NY)+0 ) ./ (2*AG(NY)); % Horizontal advection TADV = advuTG + advvTG;