| 1 | % | 
| 2 | %  function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) | 
| 3 | % | 
| 4 | % Computes horizontal advection of scalar T | 
| 5 | % on the XT, YT (physics) grid at a given vertical level. | 
| 6 | % NB: (T,U,V) are 2-D fields | 
| 7 | % | 
| 8 | % (U,V) on a C-grid (XU,YU) (XV,YV) | 
| 9 | % NB: The way it is computed is consistent with | 
| 10 | % the flux form used by MIT-GCM (i.e. if | 
| 11 | % T DIV is added one recovers the flux form) | 
| 12 | % | 
| 13 | % Ymin is the southern latitude (negative, in degree) | 
| 14 | % DX is the longitudinal resolution (in degree) | 
| 15 | % DY is the latitudinal resolution (in degree) | 
| 16 | % | 
| 17 | % (c) acz, Jul. 2003 | 
| 18 |  | 
| 19 |  | 
| 20 | function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) | 
| 21 |  | 
| 22 | % C-grid | 
| 23 | % | 
| 24 | [NX NY] = size(U); %or V | 
| 25 | XU = [0:DX:(DX*NX-DX)]; | 
| 26 | XV = XU + DX/2; | 
| 27 | YU = [(Ymin+DY/2):DY:(-Ymin-DY/2)]; | 
| 28 | YV = [Ymin:DY:-Ymin-DY]; | 
| 29 | XT = XV; YT = YU; | 
| 30 |  | 
| 31 | % Constants | 
| 32 | RADIUS = 6371 * 1000; | 
| 33 | DYG = RADIUS * DY * pi/180; | 
| 34 | DXG = RADIUS * DX * pi/180; | 
| 35 |  | 
| 36 | % Calculate zonal advection on U-grid | 
| 37 | advu = zeros(NX,NY); | 
| 38 | for i = 1:NX-1 | 
| 39 | advu(i+1,:) = U(i+1,:) .* (T(i+1,:)-T(i,:)); | 
| 40 | end | 
| 41 | advu(1,:) = U(1,:) .* (T(1,:)-T(NX,:)); | 
| 42 |  | 
| 43 | % Average advu on T-grid | 
| 44 | advuTG = zeros(NX,NY); | 
| 45 | AG = cos(YT*pi/180) * DYG * DXG; | 
| 46 | for i = 1:NX-1 | 
| 47 | advuTG(i,:) = DYG*( advu(i,:)+advu(i+1,:) ) ./ (2*AG); | 
| 48 | end | 
| 49 | advuTG(NX,:) = DYG*( advu(NX,:)+advu(1,:) ) ./ (2*AG); | 
| 50 |  | 
| 51 | % Calculate meridional advection on V-grid | 
| 52 | advv = zeros(NX,NY); %note advv(:,1) = 0 because v(:,1)=0 | 
| 53 | for j = 2:NY | 
| 54 | advv(:,j) = V(:,j) .* (T(:,j)-T(:,j-1)); | 
| 55 | end | 
| 56 |  | 
| 57 | % Average advv on T-grid | 
| 58 | advvTG = zeros(NX,NY); | 
| 59 | for j = 1:NY-1 | 
| 60 | AG(j) = DYG * DXG * ( cos(YV(j+1)*pi/180)+cos(YV(j)*pi/180) )/2; | 
| 61 | end | 
| 62 | AG(NY) = DYG * DXG * ( cos((YV(NY)+DY)*pi/180)+cos(YV(NY)*pi/180) )/2; | 
| 63 | DDXG = DXG * cos((YV+DY)*pi/180); | 
| 64 | for j = 1:NY-1 | 
| 65 | advvTG(:,j) = DDXG(j)*( advv(:,j)+advv(:,j+1) ) ./ (2*AG(j)); | 
| 66 | end | 
| 67 | advvTG(:,NY) = DDXG(NY)*( advv(:,NY)+0 ) ./ (2*AG(NY)); | 
| 68 |  | 
| 69 | % Horizontal advection | 
| 70 | TADV = advuTG + advvTG; | 
| 71 |  |