| 1 | 
edhill | 
1.1 | 
% | 
| 2 | 
  | 
  | 
%  function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) | 
| 3 | 
  | 
  | 
% | 
| 4 | 
  | 
  | 
% Computes horizontal advection of scalar T  | 
| 5 | 
  | 
  | 
% on the XT, YT (physics) grid at a given vertical level. | 
| 6 | 
  | 
  | 
% NB: (T,U,V) are 2-D fields | 
| 7 | 
  | 
  | 
% | 
| 8 | 
  | 
  | 
% (U,V) on a C-grid (XU,YU) (XV,YV) | 
| 9 | 
  | 
  | 
% NB: The way it is computed is consistent with | 
| 10 | 
  | 
  | 
% the flux form used by MIT-GCM (i.e. if | 
| 11 | 
  | 
  | 
% T DIV is added one recovers the flux form) | 
| 12 | 
  | 
  | 
%  | 
| 13 | 
  | 
  | 
% Ymin is the southern latitude (negative, in degree) | 
| 14 | 
  | 
  | 
% DX is the longitudinal resolution (in degree) | 
| 15 | 
  | 
  | 
% DY is the latitudinal resolution (in degree) | 
| 16 | 
  | 
  | 
% | 
| 17 | 
  | 
  | 
% (c) acz, Jul. 2003 | 
| 18 | 
  | 
  | 
 | 
| 19 | 
  | 
  | 
 | 
| 20 | 
  | 
  | 
  function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
% C-grid | 
| 23 | 
  | 
  | 
% | 
| 24 | 
  | 
  | 
  [NX NY] = size(U); %or V | 
| 25 | 
  | 
  | 
  XU = [0:DX:(DX*NX-DX)]; | 
| 26 | 
  | 
  | 
  XV = XU + DX/2; | 
| 27 | 
  | 
  | 
  YU = [(Ymin+DY/2):DY:(-Ymin-DY/2)];  | 
| 28 | 
  | 
  | 
  YV = [Ymin:DY:-Ymin-DY]; | 
| 29 | 
  | 
  | 
  XT = XV; YT = YU; | 
| 30 | 
  | 
  | 
 | 
| 31 | 
  | 
  | 
% Constants | 
| 32 | 
  | 
  | 
  RADIUS = 6371 * 1000; | 
| 33 | 
  | 
  | 
  DYG = RADIUS * DY * pi/180; | 
| 34 | 
  | 
  | 
  DXG = RADIUS * DX * pi/180; | 
| 35 | 
  | 
  | 
 | 
| 36 | 
  | 
  | 
% Calculate zonal advection on U-grid | 
| 37 | 
  | 
  | 
  advu = zeros(NX,NY); | 
| 38 | 
  | 
  | 
  for i = 1:NX-1 | 
| 39 | 
  | 
  | 
    advu(i+1,:) = U(i+1,:) .* (T(i+1,:)-T(i,:)); | 
| 40 | 
  | 
  | 
  end | 
| 41 | 
  | 
  | 
  advu(1,:) = U(1,:) .* (T(1,:)-T(NX,:)); | 
| 42 | 
  | 
  | 
 | 
| 43 | 
  | 
  | 
% Average advu on T-grid | 
| 44 | 
  | 
  | 
  advuTG = zeros(NX,NY); | 
| 45 | 
  | 
  | 
  AG = cos(YT*pi/180) * DYG * DXG; | 
| 46 | 
  | 
  | 
  for i = 1:NX-1 | 
| 47 | 
  | 
  | 
    advuTG(i,:) = DYG*( advu(i,:)+advu(i+1,:) ) ./ (2*AG); | 
| 48 | 
  | 
  | 
  end | 
| 49 | 
  | 
  | 
  advuTG(NX,:) = DYG*( advu(NX,:)+advu(1,:) ) ./ (2*AG); | 
| 50 | 
  | 
  | 
 | 
| 51 | 
  | 
  | 
% Calculate meridional advection on V-grid | 
| 52 | 
  | 
  | 
  advv = zeros(NX,NY); %note advv(:,1) = 0 because v(:,1)=0 | 
| 53 | 
  | 
  | 
  for j = 2:NY | 
| 54 | 
  | 
  | 
    advv(:,j) = V(:,j) .* (T(:,j)-T(:,j-1)); | 
| 55 | 
  | 
  | 
  end | 
| 56 | 
  | 
  | 
 | 
| 57 | 
  | 
  | 
% Average advv on T-grid | 
| 58 | 
  | 
  | 
  advvTG = zeros(NX,NY); | 
| 59 | 
  | 
  | 
  for j = 1:NY-1 | 
| 60 | 
  | 
  | 
    AG(j) = DYG * DXG * ( cos(YV(j+1)*pi/180)+cos(YV(j)*pi/180) )/2; | 
| 61 | 
  | 
  | 
  end | 
| 62 | 
  | 
  | 
  AG(NY) = DYG * DXG * ( cos((YV(NY)+DY)*pi/180)+cos(YV(NY)*pi/180) )/2; | 
| 63 | 
  | 
  | 
  DDXG = DXG * cos((YV+DY)*pi/180); | 
| 64 | 
  | 
  | 
  for j = 1:NY-1 | 
| 65 | 
  | 
  | 
    advvTG(:,j) = DDXG(j)*( advv(:,j)+advv(:,j+1) ) ./ (2*AG(j)); | 
| 66 | 
  | 
  | 
  end | 
| 67 | 
  | 
  | 
  advvTG(:,NY) = DDXG(NY)*( advv(:,NY)+0 ) ./ (2*AG(NY)); | 
| 68 | 
  | 
  | 
 | 
| 69 | 
  | 
  | 
% Horizontal advection | 
| 70 | 
  | 
  | 
  TADV = advuTG + advvTG; | 
| 71 | 
  | 
  | 
 |