| 1 | edhill | 1.1 | % | 
| 2 |  |  | %  function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) | 
| 3 |  |  | % | 
| 4 |  |  | % Computes horizontal advection of scalar T | 
| 5 |  |  | % on the XT, YT (physics) grid at a given vertical level. | 
| 6 |  |  | % NB: (T,U,V) are 2-D fields | 
| 7 |  |  | % | 
| 8 |  |  | % (U,V) on a C-grid (XU,YU) (XV,YV) | 
| 9 |  |  | % NB: The way it is computed is consistent with | 
| 10 |  |  | % the flux form used by MIT-GCM (i.e. if | 
| 11 |  |  | % T DIV is added one recovers the flux form) | 
| 12 |  |  | % | 
| 13 |  |  | % Ymin is the southern latitude (negative, in degree) | 
| 14 |  |  | % DX is the longitudinal resolution (in degree) | 
| 15 |  |  | % DY is the latitudinal resolution (in degree) | 
| 16 |  |  | % | 
| 17 |  |  | % (c) acz, Jul. 2003 | 
| 18 |  |  |  | 
| 19 |  |  |  | 
| 20 |  |  | function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) | 
| 21 |  |  |  | 
| 22 |  |  | % C-grid | 
| 23 |  |  | % | 
| 24 |  |  | [NX NY] = size(U); %or V | 
| 25 |  |  | XU = [0:DX:(DX*NX-DX)]; | 
| 26 |  |  | XV = XU + DX/2; | 
| 27 |  |  | YU = [(Ymin+DY/2):DY:(-Ymin-DY/2)]; | 
| 28 |  |  | YV = [Ymin:DY:-Ymin-DY]; | 
| 29 |  |  | XT = XV; YT = YU; | 
| 30 |  |  |  | 
| 31 |  |  | % Constants | 
| 32 |  |  | RADIUS = 6371 * 1000; | 
| 33 |  |  | DYG = RADIUS * DY * pi/180; | 
| 34 |  |  | DXG = RADIUS * DX * pi/180; | 
| 35 |  |  |  | 
| 36 |  |  | % Calculate zonal advection on U-grid | 
| 37 |  |  | advu = zeros(NX,NY); | 
| 38 |  |  | for i = 1:NX-1 | 
| 39 |  |  | advu(i+1,:) = U(i+1,:) .* (T(i+1,:)-T(i,:)); | 
| 40 |  |  | end | 
| 41 |  |  | advu(1,:) = U(1,:) .* (T(1,:)-T(NX,:)); | 
| 42 |  |  |  | 
| 43 |  |  | % Average advu on T-grid | 
| 44 |  |  | advuTG = zeros(NX,NY); | 
| 45 |  |  | AG = cos(YT*pi/180) * DYG * DXG; | 
| 46 |  |  | for i = 1:NX-1 | 
| 47 |  |  | advuTG(i,:) = DYG*( advu(i,:)+advu(i+1,:) ) ./ (2*AG); | 
| 48 |  |  | end | 
| 49 |  |  | advuTG(NX,:) = DYG*( advu(NX,:)+advu(1,:) ) ./ (2*AG); | 
| 50 |  |  |  | 
| 51 |  |  | % Calculate meridional advection on V-grid | 
| 52 |  |  | advv = zeros(NX,NY); %note advv(:,1) = 0 because v(:,1)=0 | 
| 53 |  |  | for j = 2:NY | 
| 54 |  |  | advv(:,j) = V(:,j) .* (T(:,j)-T(:,j-1)); | 
| 55 |  |  | end | 
| 56 |  |  |  | 
| 57 |  |  | % Average advv on T-grid | 
| 58 |  |  | advvTG = zeros(NX,NY); | 
| 59 |  |  | for j = 1:NY-1 | 
| 60 |  |  | AG(j) = DYG * DXG * ( cos(YV(j+1)*pi/180)+cos(YV(j)*pi/180) )/2; | 
| 61 |  |  | end | 
| 62 |  |  | AG(NY) = DYG * DXG * ( cos((YV(NY)+DY)*pi/180)+cos(YV(NY)*pi/180) )/2; | 
| 63 |  |  | DDXG = DXG * cos((YV+DY)*pi/180); | 
| 64 |  |  | for j = 1:NY-1 | 
| 65 |  |  | advvTG(:,j) = DDXG(j)*( advv(:,j)+advv(:,j+1) ) ./ (2*AG(j)); | 
| 66 |  |  | end | 
| 67 |  |  | advvTG(:,NY) = DDXG(NY)*( advv(:,NY)+0 ) ./ (2*AG(NY)); | 
| 68 |  |  |  | 
| 69 |  |  | % Horizontal advection | 
| 70 |  |  | TADV = advuTG + advvTG; | 
| 71 |  |  |  |