| 1 |
edhill |
1.1 |
% |
| 2 |
|
|
% function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) |
| 3 |
|
|
% |
| 4 |
|
|
% Computes horizontal advection of scalar T |
| 5 |
|
|
% on the XT, YT (physics) grid at a given vertical level. |
| 6 |
|
|
% NB: (T,U,V) are 2-D fields |
| 7 |
|
|
% |
| 8 |
|
|
% (U,V) on a C-grid (XU,YU) (XV,YV) |
| 9 |
|
|
% NB: The way it is computed is consistent with |
| 10 |
|
|
% the flux form used by MIT-GCM (i.e. if |
| 11 |
|
|
% T DIV is added one recovers the flux form) |
| 12 |
|
|
% |
| 13 |
|
|
% Ymin is the southern latitude (negative, in degree) |
| 14 |
|
|
% DX is the longitudinal resolution (in degree) |
| 15 |
|
|
% DY is the latitudinal resolution (in degree) |
| 16 |
|
|
% |
| 17 |
|
|
% (c) acz, Jul. 2003 |
| 18 |
|
|
|
| 19 |
|
|
|
| 20 |
|
|
function [XT,YT,TADV] = calc_hadv(T,U,V,DX,DY,Ymin) |
| 21 |
|
|
|
| 22 |
|
|
% C-grid |
| 23 |
|
|
% |
| 24 |
|
|
[NX NY] = size(U); %or V |
| 25 |
|
|
XU = [0:DX:(DX*NX-DX)]; |
| 26 |
|
|
XV = XU + DX/2; |
| 27 |
|
|
YU = [(Ymin+DY/2):DY:(-Ymin-DY/2)]; |
| 28 |
|
|
YV = [Ymin:DY:-Ymin-DY]; |
| 29 |
|
|
XT = XV; YT = YU; |
| 30 |
|
|
|
| 31 |
|
|
% Constants |
| 32 |
|
|
RADIUS = 6371 * 1000; |
| 33 |
|
|
DYG = RADIUS * DY * pi/180; |
| 34 |
|
|
DXG = RADIUS * DX * pi/180; |
| 35 |
|
|
|
| 36 |
|
|
% Calculate zonal advection on U-grid |
| 37 |
|
|
advu = zeros(NX,NY); |
| 38 |
|
|
for i = 1:NX-1 |
| 39 |
|
|
advu(i+1,:) = U(i+1,:) .* (T(i+1,:)-T(i,:)); |
| 40 |
|
|
end |
| 41 |
|
|
advu(1,:) = U(1,:) .* (T(1,:)-T(NX,:)); |
| 42 |
|
|
|
| 43 |
|
|
% Average advu on T-grid |
| 44 |
|
|
advuTG = zeros(NX,NY); |
| 45 |
|
|
AG = cos(YT*pi/180) * DYG * DXG; |
| 46 |
|
|
for i = 1:NX-1 |
| 47 |
|
|
advuTG(i,:) = DYG*( advu(i,:)+advu(i+1,:) ) ./ (2*AG); |
| 48 |
|
|
end |
| 49 |
|
|
advuTG(NX,:) = DYG*( advu(NX,:)+advu(1,:) ) ./ (2*AG); |
| 50 |
|
|
|
| 51 |
|
|
% Calculate meridional advection on V-grid |
| 52 |
|
|
advv = zeros(NX,NY); %note advv(:,1) = 0 because v(:,1)=0 |
| 53 |
|
|
for j = 2:NY |
| 54 |
|
|
advv(:,j) = V(:,j) .* (T(:,j)-T(:,j-1)); |
| 55 |
|
|
end |
| 56 |
|
|
|
| 57 |
|
|
% Average advv on T-grid |
| 58 |
|
|
advvTG = zeros(NX,NY); |
| 59 |
|
|
for j = 1:NY-1 |
| 60 |
|
|
AG(j) = DYG * DXG * ( cos(YV(j+1)*pi/180)+cos(YV(j)*pi/180) )/2; |
| 61 |
|
|
end |
| 62 |
|
|
AG(NY) = DYG * DXG * ( cos((YV(NY)+DY)*pi/180)+cos(YV(NY)*pi/180) )/2; |
| 63 |
|
|
DDXG = DXG * cos((YV+DY)*pi/180); |
| 64 |
|
|
for j = 1:NY-1 |
| 65 |
|
|
advvTG(:,j) = DDXG(j)*( advv(:,j)+advv(:,j+1) ) ./ (2*AG(j)); |
| 66 |
|
|
end |
| 67 |
|
|
advvTG(:,NY) = DDXG(NY)*( advv(:,NY)+0 ) ./ (2*AG(NY)); |
| 68 |
|
|
|
| 69 |
|
|
% Horizontal advection |
| 70 |
|
|
TADV = advuTG + advvTG; |
| 71 |
|
|
|