| 1 |
mmazloff |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F,v 1.28 2005/09/26 15:27:11 baylor Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "MOM_VECINV_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
SUBROUTINE MOM_VI_HDISSIP( |
| 7 |
|
|
I bi,bj,k, |
| 8 |
|
|
I hDiv,vort3,tension,strain,KE, |
| 9 |
|
|
I hFacZ,dStar,zStar, |
| 10 |
|
|
I viscAh_Z,viscAh_D,viscA4_Z,viscA4_D, |
| 11 |
|
|
I harmonic,biharmonic,useVariableViscosity, |
| 12 |
|
|
O uDissip,vDissip, |
| 13 |
|
|
I myThid) |
| 14 |
|
|
|
| 15 |
|
|
cph( |
| 16 |
|
|
cph The following line was commented in the argument list |
| 17 |
|
|
cph TAMC cannot digest commented lines within continuing lines |
| 18 |
|
|
c I viscAh_Z,viscAh_D,viscA4_Z,viscA4_D, |
| 19 |
|
|
cph) |
| 20 |
|
|
|
| 21 |
|
|
IMPLICIT NONE |
| 22 |
|
|
C |
| 23 |
|
|
C Calculate horizontal dissipation terms |
| 24 |
|
|
C [del^2 - del^4] (u,v) |
| 25 |
|
|
C |
| 26 |
|
|
|
| 27 |
|
|
C == Global variables == |
| 28 |
|
|
#include "SIZE.h" |
| 29 |
|
|
#include "GRID.h" |
| 30 |
|
|
#include "EEPARAMS.h" |
| 31 |
|
|
#include "PARAMS.h" |
| 32 |
|
|
|
| 33 |
|
|
C == Routine arguments == |
| 34 |
|
|
INTEGER bi,bj,k |
| 35 |
|
|
_RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 36 |
|
|
_RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 37 |
|
|
_RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 38 |
|
|
_RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 39 |
|
|
_RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 40 |
|
|
_RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 41 |
|
|
_RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 42 |
|
|
_RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 43 |
|
|
_RL uDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 44 |
|
|
_RL vDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 45 |
|
|
_RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 46 |
|
|
_RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 47 |
|
|
_RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 48 |
|
|
_RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 49 |
|
|
LOGICAL harmonic, biharmonic, useVariableViscosity |
| 50 |
|
|
INTEGER myThid |
| 51 |
|
|
|
| 52 |
|
|
C == Local variables == |
| 53 |
|
|
INTEGER I,J |
| 54 |
|
|
_RL Zip,Zij,Zpj,Dim,Dij,Dmj,uD2,vD2,uD4,vD4 |
| 55 |
|
|
CMM( |
| 56 |
|
|
INTEGER mm,klevbm,kplace |
| 57 |
|
|
_RL SclFactD,SclFactZ |
| 58 |
|
|
_RL SclFactD4,SclFactZ4 |
| 59 |
|
|
CMM( Saniiity check |
| 60 |
|
|
CMM print*,'CMM=> rf(k),r_low',rf(k),r_low(i,j,bi,bj) |
| 61 |
|
|
CMM print*,'CMM=>k,klevbm,kplace,ViscAh',k,klevbm,kplace,SclFactD |
| 62 |
|
|
CMM)CMM) |
| 63 |
|
|
|
| 64 |
|
|
C - Laplacian terms |
| 65 |
|
|
IF (harmonic) THEN |
| 66 |
|
|
DO j=2-Oly,sNy+Oly-1 |
| 67 |
|
|
DO i=2-Olx,sNx+Olx-1 |
| 68 |
|
|
CMM( |
| 69 |
|
|
klevbm = 0 |
| 70 |
|
|
do mm = 1,Nr |
| 71 |
|
|
if (rf(mm).GE.r_low(i,j,bi,bj)) then |
| 72 |
|
|
klevbm = mm |
| 73 |
|
|
endif |
| 74 |
|
|
enddo |
| 75 |
|
|
kplace=klevbm-k |
| 76 |
|
|
CMM kplace = 0 is first wet cell, 1 is second, etc |
| 77 |
|
|
Cmm kplace GT 1 excludes bottom 2 cells |
| 78 |
|
|
IF (kplace.GT.2) THEN |
| 79 |
|
|
SclFactD = viscAhD |
| 80 |
|
|
SclFactZ = viscAhZ |
| 81 |
|
|
ELSE |
| 82 |
|
|
SclFactD = 1000.D0 |
| 83 |
|
|
SclFactZ = 1000.D0 |
| 84 |
|
|
ENDIF |
| 85 |
|
|
CMM) |
| 86 |
|
|
Dim=hDiv( i ,j-1) |
| 87 |
|
|
Dij=hDiv( i , j ) |
| 88 |
|
|
Dmj=hDiv(i-1, j ) |
| 89 |
|
|
Zip=hFacZ( i ,j+1)*vort3( i ,j+1) |
| 90 |
|
|
Zij=hFacZ( i , j )*vort3( i , j ) |
| 91 |
|
|
Zpj=hFacZ(i+1, j )*vort3(i+1, j ) |
| 92 |
|
|
|
| 93 |
|
|
C This bit scales the harmonic dissipation operator to be proportional |
| 94 |
|
|
C to the grid-cell area over the time-step. viscAh is then non-dimensional |
| 95 |
|
|
C and should be less than 1/8, for example viscAh=0.01 |
| 96 |
|
|
IF (useVariableViscosity) THEN |
| 97 |
|
|
Dij=Dij*viscAh_D(i,j) |
| 98 |
|
|
Dim=Dim*viscAh_D(i,j-1) |
| 99 |
|
|
Dmj=Dmj*viscAh_D(i-1,j) |
| 100 |
|
|
Zij=Zij*viscAh_Z(i,j) |
| 101 |
|
|
Zip=Zip*viscAh_Z(i,j+1) |
| 102 |
|
|
Zpj=Zpj*viscAh_Z(i+1,j) |
| 103 |
|
|
uD2 = ( |
| 104 |
|
|
& cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj) |
| 105 |
|
|
& -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) ) |
| 106 |
|
|
vD2 = ( |
| 107 |
|
|
& recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj) |
| 108 |
|
|
& *cosFacV(j,bi,bj) |
| 109 |
|
|
& +( Dij-Dim )*recip_DYC(i,j,bi,bj) ) |
| 110 |
|
|
ELSE |
| 111 |
|
|
uD2 = |
| 112 |
|
|
CMM( viscAhD* |
| 113 |
|
|
& SclFactD* |
| 114 |
|
|
CMM) |
| 115 |
|
|
& cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj) |
| 116 |
|
|
CMM( - viscAhZ* |
| 117 |
|
|
& - SclFactZ* |
| 118 |
|
|
CMM) |
| 119 |
|
|
& recip_hFacW(i,j,k,bi,bj)* |
| 120 |
|
|
& ( Zip-Zij )*recip_DYG(i,j,bi,bj) |
| 121 |
|
|
vD2 = |
| 122 |
|
|
CMM( viscAhZ* |
| 123 |
|
|
& SclFactZ* |
| 124 |
|
|
CMM) |
| 125 |
|
|
& recip_hFacS(i,j,k,bi,bj)* |
| 126 |
|
|
& cosFacV(j,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj) |
| 127 |
|
|
CMM( & + viscAhD* |
| 128 |
|
|
& + SclFactD* |
| 129 |
|
|
CMM) |
| 130 |
|
|
& ( Dij-Dim )*recip_DYC(i,j,bi,bj) |
| 131 |
|
|
ENDIF |
| 132 |
|
|
|
| 133 |
|
|
uDissip(i,j) = uD2 |
| 134 |
|
|
vDissip(i,j) = vD2 |
| 135 |
|
|
|
| 136 |
|
|
ENDDO |
| 137 |
|
|
ENDDO |
| 138 |
|
|
ELSE |
| 139 |
|
|
DO j=2-Oly,sNy+Oly-1 |
| 140 |
|
|
DO i=2-Olx,sNx+Olx-1 |
| 141 |
|
|
uDissip(i,j) = 0. |
| 142 |
|
|
vDissip(i,j) = 0. |
| 143 |
|
|
ENDDO |
| 144 |
|
|
ENDDO |
| 145 |
|
|
ENDIF |
| 146 |
|
|
|
| 147 |
|
|
C - Bi-harmonic terms |
| 148 |
|
|
IF (biharmonic) THEN |
| 149 |
|
|
DO j=2-Oly,sNy+Oly-1 |
| 150 |
|
|
DO i=2-Olx,sNx+Olx-1 |
| 151 |
|
|
CMM( |
| 152 |
|
|
klevbm = 0 |
| 153 |
|
|
do mm = 1,Nr |
| 154 |
|
|
if (rf(mm).GE.r_low(i,j,bi,bj)) then |
| 155 |
|
|
klevbm = mm |
| 156 |
|
|
endif |
| 157 |
|
|
enddo |
| 158 |
|
|
kplace=klevbm-k |
| 159 |
|
|
CMM kplace = 0 is first wet cell, 1 is second, etc |
| 160 |
|
|
Cmm kplace GT 1 excludes bottom 2 cells |
| 161 |
|
|
IF (kplace.GT.2) THEN |
| 162 |
|
|
SclFactD4 = viscA4D |
| 163 |
|
|
SclFactZ4 = viscA4Z |
| 164 |
|
|
ELSE |
| 165 |
|
|
SclFactD4 = 1000000000.D0 |
| 166 |
|
|
SclFactZ4 = 1000000000.D0 |
| 167 |
|
|
ENDIF |
| 168 |
|
|
CMM) |
| 169 |
|
|
#ifdef MOM_VI_ORIGINAL_VISCA4 |
| 170 |
|
|
Dim=dyF( i ,j-1,bi,bj)*dStar( i ,j-1) |
| 171 |
|
|
Dij=dyF( i , j ,bi,bj)*dStar( i , j ) |
| 172 |
|
|
Dmj=dyF(i-1, j ,bi,bj)*dStar(i-1, j ) |
| 173 |
|
|
|
| 174 |
|
|
Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*zStar( i ,j+1) |
| 175 |
|
|
Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*zStar( i , j ) |
| 176 |
|
|
Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*zStar(i+1, j ) |
| 177 |
|
|
#else |
| 178 |
|
|
Dim=dStar( i ,j-1) |
| 179 |
|
|
Dij=dStar( i , j ) |
| 180 |
|
|
Dmj=dStar(i-1, j ) |
| 181 |
|
|
|
| 182 |
|
|
Zip=hFacZ( i ,j+1)*zStar( i ,j+1) |
| 183 |
|
|
Zij=hFacZ( i , j )*zStar( i , j ) |
| 184 |
|
|
Zpj=hFacZ(i+1, j )*zStar(i+1, j ) |
| 185 |
|
|
#endif |
| 186 |
|
|
|
| 187 |
|
|
C This bit scales the harmonic dissipation operator to be proportional |
| 188 |
|
|
C to the grid-cell area over the time-step. viscAh is then non-dimensional |
| 189 |
|
|
C and should be less than 1/8, for example viscAh=0.01 |
| 190 |
|
|
IF (useVariableViscosity) THEN |
| 191 |
|
|
Dij=Dij*viscA4_D(i,j) |
| 192 |
|
|
Dim=Dim*viscA4_D(i,j-1) |
| 193 |
|
|
Dmj=Dmj*viscA4_D(i-1,j) |
| 194 |
|
|
Zij=Zij*viscA4_Z(i,j) |
| 195 |
|
|
Zip=Zip*viscA4_Z(i,j+1) |
| 196 |
|
|
Zpj=Zpj*viscA4_Z(i+1,j) |
| 197 |
|
|
|
| 198 |
|
|
#ifdef MOM_VI_ORIGINAL_VISCA4 |
| 199 |
|
|
uD4 = recip_rAw(i,j,bi,bj)*( |
| 200 |
|
|
& ( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 201 |
|
|
& -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij ) ) |
| 202 |
|
|
vD4 = recip_rAs(i,j,bi,bj)*( |
| 203 |
|
|
& recip_hFacS(i,j,k,bi,bj)*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 204 |
|
|
& + ( Dij-Dim ) ) |
| 205 |
|
|
ELSE |
| 206 |
|
|
uD4 = recip_rAw(i,j,bi,bj)*( |
| 207 |
|
|
& viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 208 |
|
|
& -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) ) |
| 209 |
|
|
vD4 = recip_rAs(i,j,bi,bj)*( |
| 210 |
|
|
& recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 211 |
|
|
& + viscA4*( Dij-Dim ) ) |
| 212 |
|
|
#else /* MOM_VI_ORIGINAL_VISCA4 */ |
| 213 |
|
|
uD4 = ( |
| 214 |
|
|
& cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj) |
| 215 |
|
|
& -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) ) |
| 216 |
|
|
vD4 = ( |
| 217 |
|
|
& recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj) |
| 218 |
|
|
& *cosFacV(j,bi,bj) |
| 219 |
|
|
& +( Dij-Dim )*recip_DYC(i,j,bi,bj) ) |
| 220 |
|
|
ELSE |
| 221 |
|
|
uD4 = SclFactD4* |
| 222 |
|
|
CMM( viscA4D* |
| 223 |
|
|
& cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj) |
| 224 |
|
|
& - SclFactZ4*recip_hFacW(i,j,k,bi,bj)* |
| 225 |
|
|
& ( Zip-Zij )*recip_DYG(i,j,bi,bj) |
| 226 |
|
|
vD4 = SclFactZ4*recip_hFacS(i,j,k,bi,bj)* |
| 227 |
|
|
& cosFacV(j,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj) |
| 228 |
|
|
& + SclFactD4* ( Dij-Dim )*recip_DYC(i,j,bi,bj) |
| 229 |
|
|
CMM) |
| 230 |
|
|
#endif /* MOM_VI_ORIGINAL_VISCA4 */ |
| 231 |
|
|
ENDIF |
| 232 |
|
|
|
| 233 |
|
|
uDissip(i,j) = uDissip(i,j) - uD4 |
| 234 |
|
|
vDissip(i,j) = vDissip(i,j) - vD4 |
| 235 |
|
|
|
| 236 |
|
|
ENDDO |
| 237 |
|
|
ENDDO |
| 238 |
|
|
ENDIF |
| 239 |
|
|
|
| 240 |
|
|
RETURN |
| 241 |
|
|
END |