| 1 | 
clear all | 
| 2 | 
close all | 
| 3 | 
ieee='b';accuracy='single'; | 
| 4 | 
 | 
| 5 | 
dz = [500 500 500 500 500 500 500 500 ] | 
| 6 | 
zf=-cumsum([0 dz]); | 
| 7 | 
zc=(zf(1:end-1)+zf(2:end))/2; | 
| 8 | 
 | 
| 9 | 
Ho=-zf(length(zf)); | 
| 10 | 
nx=64;ny=64;nz = 8; | 
| 11 | 
 | 
| 12 | 
if 1 | 
| 13 | 
    % set up input for model | 
| 14 | 
    % Flat bottom at z=-Ho | 
| 15 | 
    h=-Ho*ones(nx,ny); | 
| 16 | 
    %h(end,:)=0;%h(:,end)=0;%WALLS | 
| 17 | 
    fid=fopen('topog.box','w',ieee); fwrite(fid,h,accuracy); fclose(fid); | 
| 18 | 
     | 
| 19 | 
    T = [20.,16.,12.,10., 9., 8., 7., 6.]     | 
| 20 | 
    T2D = single(ones(64,1)*T);        | 
| 21 | 
%    plot((T2D(1,:)),zc,'-ro','linewidth',2) | 
| 22 | 
    T3D = zeros(nx,ny,nz,'single'); | 
| 23 | 
    for i = 1:64;   T3D(i,:,:)= T2D;  end | 
| 24 | 
   | 
| 25 | 
  % T OBSERVED | 
| 26 | 
    fid = fopen('FinalThetaObs.bin','w',ieee); | 
| 27 | 
       fwrite(fid,T3D,accuracy); | 
| 28 | 
    fclose(fid) | 
| 29 | 
 | 
| 30 | 
  %VPROFILE | 
| 31 | 
    x = linspace(-1,1,ny)';%x = [-1 linspace(-1,1,ny-2) 1] | 
| 32 | 
    V = single(1-(x.^2)); | 
| 33 | 
    V2D =single(V*ones(1,nz))./10; | 
| 34 | 
  %V2D = zeros(64,nz,'single'); | 
| 35 | 
  for i = 1:64 | 
| 36 | 
    V3D(i,:,:) = V2D; | 
| 37 | 
  end | 
| 38 | 
 | 
| 39 | 
% Lets make a zonal jet solution  | 
| 40 | 
  %INITIAL CONDITION  | 
| 41 | 
  fid = fopen('Vini.bin','w',ieee); | 
| 42 | 
  fwrite(fid,V3D.*0,accuracy); | 
| 43 | 
  fclose(fid) | 
| 44 | 
  fid = fopen('Uini.bin','w',ieee); | 
| 45 | 
  fwrite(fid,V3D,accuracy); | 
| 46 | 
  fclose(fid) | 
| 47 | 
   | 
| 48 | 
  %NORTHERN BOUNDARY | 
| 49 | 
  fid = fopen('Unbc.bin','w',ieee); | 
| 50 | 
  fwrite(fid,zeros(nx,nz,accuracy),accuracy); | 
| 51 | 
  fclose(fid) | 
| 52 | 
  fid = fopen('Vnbc.bin','w',ieee); | 
| 53 | 
  fwrite(fid,zeros(nx,nz,accuracy),accuracy); | 
| 54 | 
  fclose(fid) | 
| 55 | 
  fid = fopen('Snbc.bin','w',ieee); | 
| 56 | 
  fwrite(fid,35.*ones(nx,nz,accuracy),accuracy); | 
| 57 | 
  fclose(fid) | 
| 58 | 
  fid = fopen('Tnbc.bin','w',ieee); | 
| 59 | 
  fwrite(fid,T2D,accuracy); | 
| 60 | 
  fclose(fid)  | 
| 61 | 
 | 
| 62 | 
  %SOUTHERN BOUNDARY | 
| 63 | 
  fid = fopen('Usbc.bin','w',ieee); | 
| 64 | 
  fwrite(fid,zeros(nx,nz,accuracy),accuracy); | 
| 65 | 
  fclose(fid) | 
| 66 | 
  fid = fopen('Vsbc.bin','w',ieee); | 
| 67 | 
  fwrite(fid,zeros(nx,nz,accuracy),accuracy); | 
| 68 | 
  fclose(fid) | 
| 69 | 
  fid = fopen('Ssbc.bin','w',ieee); | 
| 70 | 
  fwrite(fid,35.*ones(nx,nz,accuracy),accuracy); | 
| 71 | 
  fclose(fid) | 
| 72 | 
  fid = fopen('Tsbc.bin','w',ieee); | 
| 73 | 
  fwrite(fid,T2D,accuracy); | 
| 74 | 
  fclose(fid) | 
| 75 | 
 | 
| 76 | 
  %WESTERN BOUNDARY | 
| 77 | 
  fid = fopen('Uwbc.bin','w',ieee); | 
| 78 | 
  fwrite(fid,V2D,accuracy); | 
| 79 | 
  fclose(fid) | 
| 80 | 
  fid = fopen('Vwbc.bin','w',ieee); | 
| 81 | 
  fwrite(fid,zeros(ny,nz,accuracy),accuracy); | 
| 82 | 
  fclose(fid) | 
| 83 | 
  fid = fopen('Swbc.bin','w',ieee); | 
| 84 | 
  fwrite(fid,35.*ones(ny,nz,accuracy),accuracy); | 
| 85 | 
  fclose(fid) | 
| 86 | 
  fid = fopen('Twbc.bin','w',ieee); | 
| 87 | 
  fwrite(fid,T2D,accuracy); | 
| 88 | 
  fclose(fid) | 
| 89 | 
 | 
| 90 | 
 | 
| 91 | 
  %EASTERN BOUNDARY | 
| 92 | 
  fid = fopen('Uebc.bin','w',ieee); | 
| 93 | 
  fwrite(fid,V2D,accuracy); | 
| 94 | 
  fclose(fid) | 
| 95 | 
  fid = fopen('Vebc.bin','w',ieee); | 
| 96 | 
  fwrite(fid,zeros(ny,nz,accuracy),accuracy); | 
| 97 | 
  fclose(fid) | 
| 98 | 
  fid = fopen('Sebc.bin','w',ieee); | 
| 99 | 
  fwrite(fid,35.*ones(ny,nz,accuracy),accuracy); | 
| 100 | 
  fclose(fid) | 
| 101 | 
  fid = fopen('Tebc.bin','w',ieee); | 
| 102 | 
  fwrite(fid,T2D,accuracy); | 
| 103 | 
  fclose(fid) | 
| 104 | 
  % end of model setup if-then | 
| 105 | 
end | 
| 106 | 
 | 
| 107 | 
 | 
| 108 | 
if 0 | 
| 109 | 
  % get vertical modes for obcs decomp | 
| 110 | 
  rhonil = 1035;g = 9.81; | 
| 111 | 
  RC = squeeze(rdmds('../GRID/RC')); | 
| 112 | 
  RF = squeeze(rdmds('../GRID/RF'));   | 
| 113 | 
  DRF = squeeze(rdmds('../GRID/DRF'));   | 
| 114 | 
  mask = squeeze(rdmds('../GRID/maskInC')); | 
| 115 | 
  RLOW=RF(end); | 
| 116 | 
  zmid = [0; (RC(1:end-1)+RC(2:end))/2;RLOW]; | 
| 117 | 
  NZ = length(RC); | 
| 118 | 
   | 
| 119 | 
  % all the dRhdz* come down to Nz | 
| 120 | 
  dRhodz_bar = rdmds('../run_fwd/dRhodz_5'); | 
| 121 | 
  dRhodz_bar(mask==0)=0;dRhodz_bar(dRhodz_bar==0) = nan; | 
| 122 | 
  dRhodz_bar = squeeze(nanmean(nanmean(dRhodz_bar(32:33,32:33,:),1),2)); | 
| 123 | 
  dRhodz_bar(1)=dRhodz_bar(2);dRhodz_bar(NZ+1)=dRhodz_bar(NZ); | 
| 124 | 
  Nz = (-g./rhonil.*dRhodz_bar).^0.5; | 
| 125 | 
   | 
| 126 | 
  modesv = zeros(NZ,NZ,NZ); | 
| 127 | 
  % when only one depth, just have 1 for the mode | 
| 128 | 
  modesv(1,1,1) = 1.0; | 
| 129 | 
  % for more than 1 depth, solve eigenvalue problem | 
| 130 | 
  for k = 2:NZ; | 
| 131 | 
    % iz = vector of depth levels | 
| 132 | 
    iz = 1:k; | 
| 133 | 
    % print out a progress number | 
| 134 | 
    NZ-k, | 
| 135 | 
    % regularly spaced depths to the bottom of layer k; | 
| 136 | 
    % leave out the surface: VERT_FSFB2.m will supply it. | 
| 137 | 
    % 5 m spacing was selected as being small enough | 
| 138 | 
    zreg=-5:-5:RF(k+1); | 
| 139 | 
    Nzreg = interp1(zmid,Nz.^2,zreg,'linear',0); | 
| 140 | 
    [c2, F, G, N2, Pmid] = VERT_FSFB2(Nzreg,zreg); | 
| 141 | 
    %VERT_FSFB2.m adds a surface point | 
| 142 | 
    zreg = [0,zreg]; | 
| 143 | 
    % sort from largest to smallest phase speed | 
| 144 | 
    [c2s indx] = sort(abs(c2),'descend'); | 
| 145 | 
    % now interp back to our grid | 
| 146 | 
    for mds = 1:k | 
| 147 | 
      YI = interp1(zreg,F(:,indx(mds)),RC(iz),'linear',0); | 
| 148 | 
      modesv(iz,mds,k) = YI; | 
| 149 | 
    end | 
| 150 | 
    % have to weight by dz!  Make a vector of fractional dz's | 
| 151 | 
    zwt = DRF(iz)/sum(DRF(iz),1); | 
| 152 | 
    %ensure first mode is barotropic (constant in depth) | 
| 153 | 
    avm1=sum(modesv(iz,1,k).*zwt,1); | 
| 154 | 
    modesv(iz,1,k)=avm1; | 
| 155 | 
    %make all modes orthogonal weighted by delta z | 
| 156 | 
    % use gram-schmidt leaving first one the same | 
| 157 | 
    for mds = 1:k-1 | 
| 158 | 
        R = sum((modesv(iz,mds,k).^2).*zwt,1); | 
| 159 | 
        R2 = (modesv(iz,mds,k).*zwt)'*modesv(iz,mds+1:k,k)/R; | 
| 160 | 
        modesv(iz,mds+1:k,k) = modesv(iz,mds+1:k,k) - ... | 
| 161 | 
            modesv(iz,mds,k)*R2; | 
| 162 | 
    end | 
| 163 | 
    %All now orthognal, now normalize | 
| 164 | 
    for mds = 1:k | 
| 165 | 
       R = sqrt(sum((modesv(iz,mds,k).^2).*zwt,1)); | 
| 166 | 
       if R < 1e-8 | 
| 167 | 
         fprintf('Small R!! for mds = %2i and k = %2i\n',mds,k); | 
| 168 | 
         R = inf; | 
| 169 | 
       end | 
| 170 | 
       modesv(iz,mds,k) = modesv(iz,mds,k)./R; | 
| 171 | 
     end | 
| 172 | 
  end;% end of loop over depth level k | 
| 173 | 
  fid = fopen('baro_invmodes.bin','w','b'); | 
| 174 | 
  fwrite(fid,modesv,'double'); | 
| 175 | 
  fclose(fid) | 
| 176 | 
  if 1 %plot first 5 modes for deepest case | 
| 177 | 
    figure | 
| 178 | 
    clf;plot(modesv(:,[1:5],NZ),RC(:)); | 
| 179 | 
    title('output modes at deepest point') | 
| 180 | 
  end | 
| 181 | 
  if 1  % test orthogonality | 
| 182 | 
    % do whole matrix (need to include dz!) | 
| 183 | 
    k = NZ; | 
| 184 | 
    cmm = (squeeze(modesv(iz,iz,k)).*repmat(zwt,[1 k]))'* ... | 
| 185 | 
          squeeze(modesv(iz,iz,k)); | 
| 186 | 
    figure;imagesc(cmm);colorbar | 
| 187 | 
    title([num2str(k) ' mode orthogonality min, max diag: ' ... | 
| 188 | 
           num2str(min(diag(cmm))) ', ' ... | 
| 189 | 
           num2str(max(diag(cmm)))]) | 
| 190 | 
  end | 
| 191 | 
  save baro_invmodes modesv | 
| 192 | 
end | 
| 193 | 
 |