| 1 | 
function [c2, Psi, G, N2, Pmid] = VERT_FSFB2(N2,Pmid) | 
| 2 | 
%function [c2, Psi, G, N2, Pmid] = VERT_FSFB2(N2,Pmid) | 
| 3 | 
% | 
| 4 | 
%    VERT_FSFB.m | 
| 5 | 
% | 
| 6 | 
%     Gabriel A. Vecchi - May 12, 1998 | 
| 7 | 
%%%%%%%%%%%%%%%% | 
| 8 | 
%  | 
| 9 | 
%    Solves the discretized wave projection problem | 
| 10 | 
%    given the vertical profiles of Temperature, Salinity, Pressure  | 
| 11 | 
%    and the depth inteval length. | 
| 12 | 
% | 
| 13 | 
%  Uses the seawater function sw_bfrq to calculate N2. | 
| 14 | 
%%%%%%%%%%%%%%%% | 
| 15 | 
% | 
| 16 | 
%    Arguments: | 
| 17 | 
%       T = temperature vector at same depths as salinity and pressure. | 
| 18 | 
%       S = salinity vector at same depths as temperature and pressure. | 
| 19 | 
%       P = pressure vector at same depths as temperature and salinity. | 
| 20 | 
%       Dz = length of depth interval in meters. | 
| 21 | 
%%%%%%%%%%%%%%%% | 
| 22 | 
% | 
| 23 | 
%    Returns: | 
| 24 | 
%       c2 = vector of square of the wavespeed. | 
| 25 | 
%       Psi = matrix of eigenvectors (horizontal velocity structure functions). | 
| 26 | 
%       G  =  matrix of integral of eigenvectors (vertical velocity structure functions). | 
| 27 | 
%       N2 = Brunt-Vaisla frequency calculated at the midpoint pressures. | 
| 28 | 
%       Pmid = midpoint pressures. | 
| 29 | 
%%%%%%%%%%%%%%%% | 
| 30 | 
 | 
| 31 | 
%  Find N2 - get a M-1 sized vector, at the equator. | 
| 32 | 
%[N2,crap,Pmid] = sw_bfrq(S,T,P,0); | 
| 33 | 
 | 
| 34 | 
for i = 1:length(N2) | 
| 35 | 
   if N2(i) < 0 | 
| 36 | 
      N2(i) = min(abs(N2)); | 
| 37 | 
   end; | 
| 38 | 
end; | 
| 39 | 
 | 
| 40 | 
% bdc: needs equally-spaced depths! | 
| 41 | 
Dz= median(diff(Pmid)); | 
| 42 | 
 | 
| 43 | 
% add a point for the surface | 
| 44 | 
M = length(N2)+1; | 
| 45 | 
 | 
| 46 | 
%  Fill in D - the differential operator matrix. | 
| 47 | 
%  Surface (repeat N2 from midpoint depth) | 
| 48 | 
D(1,1) = -2/N2(1); | 
| 49 | 
D(1,2) = 2/N2(1); | 
| 50 | 
%  Interior | 
| 51 | 
for i = 2 : M-1, | 
| 52 | 
D(i,i-1) = 1/N2(i-1); | 
| 53 | 
D(i,i) = -1/N2(i-1)-1/N2(i); | 
| 54 | 
D(i,i+1) = 1/N2(i); | 
| 55 | 
end | 
| 56 | 
%  Bottom | 
| 57 | 
D(M,M-1) = 2/N2(M-1); | 
| 58 | 
D(M,M) = -2/N2(M-1); | 
| 59 | 
D=-D./(Dz*Dz); | 
| 60 | 
%bdc: no need for A? | 
| 61 | 
% A = eye(M); | 
| 62 | 
 | 
| 63 | 
% Calculate generalized eigenvalue problem | 
| 64 | 
% bdc: eigs gets top M-1 | 
| 65 | 
%[Psi,lambda] = eigs(D,[],M-1); | 
| 66 | 
% use eig: | 
| 67 | 
[Psi,lambda] = eig(D); | 
| 68 | 
 | 
| 69 | 
% Calculate square of the wavespeed. | 
| 70 | 
c2 = sum(lambda); | 
| 71 | 
c2=1./c2; | 
| 72 | 
 | 
| 73 | 
Psi = fliplr(Psi); | 
| 74 | 
c2 = fliplr(c2); | 
| 75 | 
for i=1:size(Psi,2) | 
| 76 | 
  Psi(:,i) = Psi(:,i)/Psi(1,i); | 
| 77 | 
end | 
| 78 | 
 | 
| 79 | 
% normalize? | 
| 80 | 
G = INTEGRATOR(M,Dz)*Psi; | 
| 81 | 
 | 
| 82 | 
function [INT] = INTEGRATOR(M,Del) | 
| 83 | 
%function [INT] = INTEGRATOR(M,Del) | 
| 84 | 
% | 
| 85 | 
%    INTEGRATOR.m | 
| 86 | 
% | 
| 87 | 
%     Gabriel A. Vecchi - June 7, 1998 | 
| 88 | 
%%%%%%%%%%%%%%%% | 
| 89 | 
%    Generates and integration matrix. | 
| 90 | 
%    Integrates from first point to each point. | 
| 91 | 
%%%%%%%%%%%%%%%% | 
| 92 | 
 | 
| 93 | 
INT = tril(ones(M)); | 
| 94 | 
INT = INT - 0.5*(eye(M)); | 
| 95 | 
INT(:,1) = INT(:,1) - 0.5; | 
| 96 | 
INT = INT*Del; | 
| 97 | 
 | 
| 98 | 
 |