| 1 |
mmazloff |
1.1 |
function [c2, Psi, G, N2, Pmid] = VERT_FSFB2(N2,Pmid) |
| 2 |
|
|
%function [c2, Psi, G, N2, Pmid] = VERT_FSFB2(N2,Pmid) |
| 3 |
|
|
% |
| 4 |
|
|
% VERT_FSFB.m |
| 5 |
|
|
% |
| 6 |
|
|
% Gabriel A. Vecchi - May 12, 1998 |
| 7 |
|
|
%%%%%%%%%%%%%%%% |
| 8 |
|
|
% |
| 9 |
|
|
% Solves the discretized wave projection problem |
| 10 |
|
|
% given the vertical profiles of Temperature, Salinity, Pressure |
| 11 |
|
|
% and the depth inteval length. |
| 12 |
|
|
% |
| 13 |
|
|
% Uses the seawater function sw_bfrq to calculate N2. |
| 14 |
|
|
%%%%%%%%%%%%%%%% |
| 15 |
|
|
% |
| 16 |
|
|
% Arguments: |
| 17 |
|
|
% T = temperature vector at same depths as salinity and pressure. |
| 18 |
|
|
% S = salinity vector at same depths as temperature and pressure. |
| 19 |
|
|
% P = pressure vector at same depths as temperature and salinity. |
| 20 |
|
|
% Dz = length of depth interval in meters. |
| 21 |
|
|
%%%%%%%%%%%%%%%% |
| 22 |
|
|
% |
| 23 |
|
|
% Returns: |
| 24 |
|
|
% c2 = vector of square of the wavespeed. |
| 25 |
|
|
% Psi = matrix of eigenvectors (horizontal velocity structure functions). |
| 26 |
|
|
% G = matrix of integral of eigenvectors (vertical velocity structure functions). |
| 27 |
|
|
% N2 = Brunt-Vaisla frequency calculated at the midpoint pressures. |
| 28 |
|
|
% Pmid = midpoint pressures. |
| 29 |
|
|
%%%%%%%%%%%%%%%% |
| 30 |
|
|
|
| 31 |
|
|
% Find N2 - get a M-1 sized vector, at the equator. |
| 32 |
|
|
%[N2,crap,Pmid] = sw_bfrq(S,T,P,0); |
| 33 |
|
|
|
| 34 |
|
|
for i = 1:length(N2) |
| 35 |
|
|
if N2(i) < 0 |
| 36 |
|
|
N2(i) = min(abs(N2)); |
| 37 |
|
|
end; |
| 38 |
|
|
end; |
| 39 |
|
|
|
| 40 |
|
|
% bdc: needs equally-spaced depths! |
| 41 |
|
|
Dz= median(diff(Pmid)); |
| 42 |
|
|
|
| 43 |
|
|
% add a point for the surface |
| 44 |
|
|
M = length(N2)+1; |
| 45 |
|
|
|
| 46 |
|
|
% Fill in D - the differential operator matrix. |
| 47 |
|
|
% Surface (repeat N2 from midpoint depth) |
| 48 |
|
|
D(1,1) = -2/N2(1); |
| 49 |
|
|
D(1,2) = 2/N2(1); |
| 50 |
|
|
% Interior |
| 51 |
|
|
for i = 2 : M-1, |
| 52 |
|
|
D(i,i-1) = 1/N2(i-1); |
| 53 |
|
|
D(i,i) = -1/N2(i-1)-1/N2(i); |
| 54 |
|
|
D(i,i+1) = 1/N2(i); |
| 55 |
|
|
end |
| 56 |
|
|
% Bottom |
| 57 |
|
|
D(M,M-1) = 2/N2(M-1); |
| 58 |
|
|
D(M,M) = -2/N2(M-1); |
| 59 |
|
|
D=-D./(Dz*Dz); |
| 60 |
|
|
%bdc: no need for A? |
| 61 |
|
|
% A = eye(M); |
| 62 |
|
|
|
| 63 |
|
|
% Calculate generalized eigenvalue problem |
| 64 |
|
|
% bdc: eigs gets top M-1 |
| 65 |
|
|
%[Psi,lambda] = eigs(D,[],M-1); |
| 66 |
|
|
% use eig: |
| 67 |
|
|
[Psi,lambda] = eig(D); |
| 68 |
|
|
|
| 69 |
|
|
% Calculate square of the wavespeed. |
| 70 |
|
|
c2 = sum(lambda); |
| 71 |
|
|
c2=1./c2; |
| 72 |
|
|
|
| 73 |
|
|
Psi = fliplr(Psi); |
| 74 |
|
|
c2 = fliplr(c2); |
| 75 |
|
|
for i=1:size(Psi,2) |
| 76 |
|
|
Psi(:,i) = Psi(:,i)/Psi(1,i); |
| 77 |
|
|
end |
| 78 |
|
|
|
| 79 |
|
|
% normalize? |
| 80 |
|
|
G = INTEGRATOR(M,Dz)*Psi; |
| 81 |
|
|
|
| 82 |
|
|
function [INT] = INTEGRATOR(M,Del) |
| 83 |
|
|
%function [INT] = INTEGRATOR(M,Del) |
| 84 |
|
|
% |
| 85 |
|
|
% INTEGRATOR.m |
| 86 |
|
|
% |
| 87 |
|
|
% Gabriel A. Vecchi - June 7, 1998 |
| 88 |
|
|
%%%%%%%%%%%%%%%% |
| 89 |
|
|
% Generates and integration matrix. |
| 90 |
|
|
% Integrates from first point to each point. |
| 91 |
|
|
%%%%%%%%%%%%%%%% |
| 92 |
|
|
|
| 93 |
|
|
INT = tril(ones(M)); |
| 94 |
|
|
INT = INT - 0.5*(eye(M)); |
| 95 |
|
|
INT(:,1) = INT(:,1) - 0.5; |
| 96 |
|
|
INT = INT*Del; |
| 97 |
|
|
|
| 98 |
|
|
|