| 1 |
C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.83 2001/09/27 20:12:10 heimbach Exp $ |
| 2 |
C $Name: release1_beta1 $ |
| 3 |
|
| 4 |
#include "CPP_OPTIONS.h" |
| 5 |
|
| 6 |
CBOP |
| 7 |
C !ROUTINE: DYNAMICS |
| 8 |
C !INTERFACE: |
| 9 |
SUBROUTINE DYNAMICS(myTime, myIter, myThid) |
| 10 |
C !DESCRIPTION: \bv |
| 11 |
C *==========================================================* |
| 12 |
C | SUBROUTINE DYNAMICS |
| 13 |
C | o Controlling routine for the explicit part of the model |
| 14 |
C | dynamics. |
| 15 |
C *==========================================================* |
| 16 |
C | This routine evaluates the "dynamics" terms for each |
| 17 |
C | block of ocean in turn. Because the blocks of ocean have |
| 18 |
C | overlap regions they are independent of one another. |
| 19 |
C | If terms involving lateral integrals are needed in this |
| 20 |
C | routine care will be needed. Similarly finite-difference |
| 21 |
C | operations with stencils wider than the overlap region |
| 22 |
C | require special consideration. |
| 23 |
C | The algorithm... |
| 24 |
C | |
| 25 |
C | "Correction Step" |
| 26 |
C | ================= |
| 27 |
C | Here we update the horizontal velocities with the surface |
| 28 |
C | pressure such that the resulting flow is either consistent |
| 29 |
C | with the free-surface evolution or the rigid-lid: |
| 30 |
C | U[n] = U* + dt x d/dx P |
| 31 |
C | V[n] = V* + dt x d/dy P |
| 32 |
C | |
| 33 |
C | "Calculation of Gs" |
| 34 |
C | =================== |
| 35 |
C | This is where all the accelerations and tendencies (ie. |
| 36 |
C | physics, parameterizations etc...) are calculated |
| 37 |
C | rho = rho ( theta[n], salt[n] ) |
| 38 |
C | b = b(rho, theta) |
| 39 |
C | K31 = K31 ( rho ) |
| 40 |
C | Gu[n] = Gu( u[n], v[n], wVel, b, ... ) |
| 41 |
C | Gv[n] = Gv( u[n], v[n], wVel, b, ... ) |
| 42 |
C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) |
| 43 |
C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) |
| 44 |
C | |
| 45 |
C | "Time-stepping" or "Prediction" |
| 46 |
C | ================================ |
| 47 |
C | The models variables are stepped forward with the appropriate |
| 48 |
C | time-stepping scheme (currently we use Adams-Bashforth II) |
| 49 |
C | - For momentum, the result is always *only* a "prediction" |
| 50 |
C | in that the flow may be divergent and will be "corrected" |
| 51 |
C | later with a surface pressure gradient. |
| 52 |
C | - Normally for tracers the result is the new field at time |
| 53 |
C | level [n+1} *BUT* in the case of implicit diffusion the result |
| 54 |
C | is also *only* a prediction. |
| 55 |
C | - We denote "predictors" with an asterisk (*). |
| 56 |
C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) |
| 57 |
C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) |
| 58 |
C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 59 |
C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 60 |
C | With implicit diffusion: |
| 61 |
C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 62 |
C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 63 |
C | (1 + dt * K * d_zz) theta[n] = theta* |
| 64 |
C | (1 + dt * K * d_zz) salt[n] = salt* |
| 65 |
C | |
| 66 |
C *==========================================================* |
| 67 |
C \ev |
| 68 |
C !USES: |
| 69 |
IMPLICIT NONE |
| 70 |
C == Global variables === |
| 71 |
#include "SIZE.h" |
| 72 |
#include "EEPARAMS.h" |
| 73 |
#include "PARAMS.h" |
| 74 |
#include "DYNVARS.h" |
| 75 |
#include "GRID.h" |
| 76 |
#ifdef ALLOW_PASSIVE_TRACER |
| 77 |
#include "TR1.h" |
| 78 |
#endif |
| 79 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 80 |
# include "tamc.h" |
| 81 |
# include "tamc_keys.h" |
| 82 |
# include "FFIELDS.h" |
| 83 |
# ifdef ALLOW_KPP |
| 84 |
# include "KPP.h" |
| 85 |
# endif |
| 86 |
# ifdef ALLOW_GMREDI |
| 87 |
# include "GMREDI.h" |
| 88 |
# endif |
| 89 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 90 |
#ifdef ALLOW_TIMEAVE |
| 91 |
#include "TIMEAVE_STATV.h" |
| 92 |
#endif |
| 93 |
|
| 94 |
C !CALLING SEQUENCE: |
| 95 |
C DYNAMICS() |
| 96 |
C | |
| 97 |
C |-- CALC_GRAD_PHI_SURF |
| 98 |
C | |
| 99 |
C |-- CALC_VISCOSITY |
| 100 |
C | |
| 101 |
C |-- CALC_PHI_HYD |
| 102 |
C | |
| 103 |
C |-- MOM_FLUXFORM |
| 104 |
C | |
| 105 |
C |-- MOM_VECINV |
| 106 |
C | |
| 107 |
C |-- TIMESTEP |
| 108 |
C | |
| 109 |
C |-- OBCS_APPLY_UV |
| 110 |
C | |
| 111 |
C |-- IMPLDIFF |
| 112 |
C | |
| 113 |
C |-- OBCS_APPLY_UV |
| 114 |
C | |
| 115 |
C |-- CALL TIMEAVE_CUMUL_1T |
| 116 |
C |-- CALL TIMEAVE_CUMULATE |
| 117 |
C |-- CALL DEBUG_STATS_RL |
| 118 |
|
| 119 |
C !INPUT/OUTPUT PARAMETERS: |
| 120 |
C == Routine arguments == |
| 121 |
C myTime - Current time in simulation |
| 122 |
C myIter - Current iteration number in simulation |
| 123 |
C myThid - Thread number for this instance of the routine. |
| 124 |
_RL myTime |
| 125 |
INTEGER myIter |
| 126 |
INTEGER myThid |
| 127 |
|
| 128 |
C !LOCAL VARIABLES: |
| 129 |
C == Local variables |
| 130 |
C fVer[STUV] o fVer: Vertical flux term - note fVer |
| 131 |
C is "pipelined" in the vertical |
| 132 |
C so we need an fVer for each |
| 133 |
C variable. |
| 134 |
C rhoK, rhoKM1 - Density at current level, and level above |
| 135 |
C phiHyd - Hydrostatic part of the potential phiHydi. |
| 136 |
C In z coords phiHydiHyd is the hydrostatic |
| 137 |
C Potential (=pressure/rho0) anomaly |
| 138 |
C In p coords phiHydiHyd is the geopotential |
| 139 |
C surface height anomaly. |
| 140 |
C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean) |
| 141 |
C phiSurfY or geopotentiel (atmos) in X and Y direction |
| 142 |
C iMin, iMax - Ranges and sub-block indices on which calculations |
| 143 |
C jMin, jMax are applied. |
| 144 |
C bi, bj |
| 145 |
C k, kup, - Index for layer above and below. kup and kDown |
| 146 |
C kDown, km1 are switched with layer to be the appropriate |
| 147 |
C index into fVerTerm. |
| 148 |
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 149 |
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 150 |
_RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 151 |
_RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 152 |
_RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 153 |
_RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 154 |
_RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 155 |
_RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 156 |
_RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 157 |
_RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 158 |
_RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 159 |
_RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 160 |
|
| 161 |
C This is currently used by IVDC and Diagnostics |
| 162 |
_RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 163 |
|
| 164 |
INTEGER iMin, iMax |
| 165 |
INTEGER jMin, jMax |
| 166 |
INTEGER bi, bj |
| 167 |
INTEGER i, j |
| 168 |
INTEGER k, km1, kp1, kup, kDown |
| 169 |
|
| 170 |
Cjmc : add for phiHyd output <- but not working if multi tile per CPU |
| 171 |
c CHARACTER*(MAX_LEN_MBUF) suff |
| 172 |
c LOGICAL DIFFERENT_MULTIPLE |
| 173 |
c EXTERNAL DIFFERENT_MULTIPLE |
| 174 |
Cjmc(end) |
| 175 |
|
| 176 |
C--- The algorithm... |
| 177 |
C |
| 178 |
C "Correction Step" |
| 179 |
C ================= |
| 180 |
C Here we update the horizontal velocities with the surface |
| 181 |
C pressure such that the resulting flow is either consistent |
| 182 |
C with the free-surface evolution or the rigid-lid: |
| 183 |
C U[n] = U* + dt x d/dx P |
| 184 |
C V[n] = V* + dt x d/dy P |
| 185 |
C |
| 186 |
C "Calculation of Gs" |
| 187 |
C =================== |
| 188 |
C This is where all the accelerations and tendencies (ie. |
| 189 |
C physics, parameterizations etc...) are calculated |
| 190 |
C rho = rho ( theta[n], salt[n] ) |
| 191 |
C b = b(rho, theta) |
| 192 |
C K31 = K31 ( rho ) |
| 193 |
C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) |
| 194 |
C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) |
| 195 |
C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) |
| 196 |
C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) |
| 197 |
C |
| 198 |
C "Time-stepping" or "Prediction" |
| 199 |
C ================================ |
| 200 |
C The models variables are stepped forward with the appropriate |
| 201 |
C time-stepping scheme (currently we use Adams-Bashforth II) |
| 202 |
C - For momentum, the result is always *only* a "prediction" |
| 203 |
C in that the flow may be divergent and will be "corrected" |
| 204 |
C later with a surface pressure gradient. |
| 205 |
C - Normally for tracers the result is the new field at time |
| 206 |
C level [n+1} *BUT* in the case of implicit diffusion the result |
| 207 |
C is also *only* a prediction. |
| 208 |
C - We denote "predictors" with an asterisk (*). |
| 209 |
C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) |
| 210 |
C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) |
| 211 |
C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 212 |
C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 213 |
C With implicit diffusion: |
| 214 |
C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 215 |
C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 216 |
C (1 + dt * K * d_zz) theta[n] = theta* |
| 217 |
C (1 + dt * K * d_zz) salt[n] = salt* |
| 218 |
C--- |
| 219 |
CEOP |
| 220 |
|
| 221 |
C-- Set up work arrays with valid (i.e. not NaN) values |
| 222 |
C These inital values do not alter the numerical results. They |
| 223 |
C just ensure that all memory references are to valid floating |
| 224 |
C point numbers. This prevents spurious hardware signals due to |
| 225 |
C uninitialised but inert locations. |
| 226 |
DO j=1-OLy,sNy+OLy |
| 227 |
DO i=1-OLx,sNx+OLx |
| 228 |
DO k=1,Nr |
| 229 |
phiHyd(i,j,k) = 0. _d 0 |
| 230 |
KappaRU(i,j,k) = 0. _d 0 |
| 231 |
KappaRV(i,j,k) = 0. _d 0 |
| 232 |
sigmaX(i,j,k) = 0. _d 0 |
| 233 |
sigmaY(i,j,k) = 0. _d 0 |
| 234 |
sigmaR(i,j,k) = 0. _d 0 |
| 235 |
ENDDO |
| 236 |
rhoKM1 (i,j) = 0. _d 0 |
| 237 |
rhok (i,j) = 0. _d 0 |
| 238 |
phiSurfX(i,j) = 0. _d 0 |
| 239 |
phiSurfY(i,j) = 0. _d 0 |
| 240 |
ENDDO |
| 241 |
ENDDO |
| 242 |
|
| 243 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 244 |
C-- HPF directive to help TAMC |
| 245 |
CHPF$ INDEPENDENT |
| 246 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 247 |
|
| 248 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 249 |
|
| 250 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 251 |
C-- HPF directive to help TAMC |
| 252 |
CHPF$ INDEPENDENT, NEW (fVerU,fVerV |
| 253 |
CHPF$& ,phiHyd |
| 254 |
CHPF$& ,KappaRU,KappaRV |
| 255 |
CHPF$& ) |
| 256 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 257 |
|
| 258 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 259 |
|
| 260 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 261 |
act1 = bi - myBxLo(myThid) |
| 262 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 263 |
act2 = bj - myByLo(myThid) |
| 264 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 265 |
act3 = myThid - 1 |
| 266 |
max3 = nTx*nTy |
| 267 |
act4 = ikey_dynamics - 1 |
| 268 |
ikey = (act1 + 1) + act2*max1 |
| 269 |
& + act3*max1*max2 |
| 270 |
& + act4*max1*max2*max3 |
| 271 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 272 |
|
| 273 |
C-- Set up work arrays that need valid initial values |
| 274 |
DO j=1-OLy,sNy+OLy |
| 275 |
DO i=1-OLx,sNx+OLx |
| 276 |
fVerU (i,j,1) = 0. _d 0 |
| 277 |
fVerU (i,j,2) = 0. _d 0 |
| 278 |
fVerV (i,j,1) = 0. _d 0 |
| 279 |
fVerV (i,j,2) = 0. _d 0 |
| 280 |
ENDDO |
| 281 |
ENDDO |
| 282 |
|
| 283 |
C-- Start computation of dynamics |
| 284 |
iMin = 1-OLx+2 |
| 285 |
iMax = sNx+OLx-1 |
| 286 |
jMin = 1-OLy+2 |
| 287 |
jMax = sNy+OLy-1 |
| 288 |
|
| 289 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 290 |
CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 291 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 292 |
|
| 293 |
C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) |
| 294 |
C (note: this loop will be replaced by CALL CALC_GRAD_ETA) |
| 295 |
IF (implicSurfPress.NE.1.) THEN |
| 296 |
CALL CALC_GRAD_PHI_SURF( |
| 297 |
I bi,bj,iMin,iMax,jMin,jMax, |
| 298 |
I etaN, |
| 299 |
O phiSurfX,phiSurfY, |
| 300 |
I myThid ) |
| 301 |
ENDIF |
| 302 |
|
| 303 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 304 |
CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 305 |
CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 306 |
#ifdef ALLOW_KPP |
| 307 |
CADJ STORE KPPviscAz (:,:,:,bi,bj) |
| 308 |
CADJ & = comlev1_bibj, key=ikey, byte=isbyte |
| 309 |
#endif /* ALLOW_KPP */ |
| 310 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 311 |
|
| 312 |
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL |
| 313 |
C-- Calculate the total vertical diffusivity |
| 314 |
DO k=1,Nr |
| 315 |
CALL CALC_VISCOSITY( |
| 316 |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 317 |
O KappaRU,KappaRV, |
| 318 |
I myThid) |
| 319 |
ENDDO |
| 320 |
#endif |
| 321 |
|
| 322 |
C-- Start of dynamics loop |
| 323 |
DO k=1,Nr |
| 324 |
|
| 325 |
C-- km1 Points to level above k (=k-1) |
| 326 |
C-- kup Cycles through 1,2 to point to layer above |
| 327 |
C-- kDown Cycles through 2,1 to point to current layer |
| 328 |
|
| 329 |
km1 = MAX(1,k-1) |
| 330 |
kp1 = MIN(k+1,Nr) |
| 331 |
kup = 1+MOD(k+1,2) |
| 332 |
kDown= 1+MOD(k,2) |
| 333 |
|
| 334 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 335 |
kkey = (ikey-1)*Nr + k |
| 336 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 337 |
|
| 338 |
C-- Integrate hydrostatic balance for phiHyd with BC of |
| 339 |
C phiHyd(z=0)=0 |
| 340 |
C distinguishe between Stagger and Non Stagger time stepping |
| 341 |
IF (staggerTimeStep) THEN |
| 342 |
CALL CALC_PHI_HYD( |
| 343 |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 344 |
I gT, gS, |
| 345 |
U phiHyd, |
| 346 |
I myThid ) |
| 347 |
ELSE |
| 348 |
CALL CALC_PHI_HYD( |
| 349 |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 350 |
I theta, salt, |
| 351 |
U phiHyd, |
| 352 |
I myThid ) |
| 353 |
ENDIF |
| 354 |
|
| 355 |
C-- Calculate accelerations in the momentum equations (gU, gV, ...) |
| 356 |
C and step forward storing the result in gUnm1, gVnm1, etc... |
| 357 |
IF ( momStepping ) THEN |
| 358 |
#ifndef DISABLE_MOM_FLUXFORM |
| 359 |
IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM( |
| 360 |
I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, |
| 361 |
I phiHyd,KappaRU,KappaRV, |
| 362 |
U fVerU, fVerV, |
| 363 |
I myTime, myIter, myThid) |
| 364 |
#endif |
| 365 |
#ifndef DISABLE_MOM_VECINV |
| 366 |
IF (vectorInvariantMomentum) CALL MOM_VECINV( |
| 367 |
I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, |
| 368 |
I phiHyd,KappaRU,KappaRV, |
| 369 |
U fVerU, fVerV, |
| 370 |
I myTime, myIter, myThid) |
| 371 |
#endif |
| 372 |
CALL TIMESTEP( |
| 373 |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 374 |
I phiHyd, phiSurfX, phiSurfY, |
| 375 |
I myIter, myThid) |
| 376 |
|
| 377 |
#ifdef ALLOW_OBCS |
| 378 |
C-- Apply open boundary conditions |
| 379 |
IF (useOBCS) THEN |
| 380 |
CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) |
| 381 |
END IF |
| 382 |
#endif /* ALLOW_OBCS */ |
| 383 |
|
| 384 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 385 |
#ifdef INCLUDE_CD_CODE |
| 386 |
ELSE |
| 387 |
DO j=1-OLy,sNy+OLy |
| 388 |
DO i=1-OLx,sNx+OLx |
| 389 |
guCD(i,j,k,bi,bj) = 0.0 |
| 390 |
gvCD(i,j,k,bi,bj) = 0.0 |
| 391 |
END DO |
| 392 |
END DO |
| 393 |
#endif /* INCLUDE_CD_CODE */ |
| 394 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 395 |
ENDIF |
| 396 |
|
| 397 |
|
| 398 |
C-- end of dynamics k loop (1:Nr) |
| 399 |
ENDDO |
| 400 |
|
| 401 |
|
| 402 |
|
| 403 |
C-- Implicit viscosity |
| 404 |
IF (implicitViscosity.AND.momStepping) THEN |
| 405 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 406 |
idkey = iikey + 3 |
| 407 |
CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 408 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 409 |
CALL IMPLDIFF( |
| 410 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 411 |
I deltaTmom, KappaRU,recip_HFacW, |
| 412 |
U gUNm1, |
| 413 |
I myThid ) |
| 414 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 415 |
idkey = iikey + 4 |
| 416 |
CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 417 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 418 |
CALL IMPLDIFF( |
| 419 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 420 |
I deltaTmom, KappaRV,recip_HFacS, |
| 421 |
U gVNm1, |
| 422 |
I myThid ) |
| 423 |
|
| 424 |
#ifdef ALLOW_OBCS |
| 425 |
C-- Apply open boundary conditions |
| 426 |
IF (useOBCS) THEN |
| 427 |
DO K=1,Nr |
| 428 |
CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) |
| 429 |
ENDDO |
| 430 |
END IF |
| 431 |
#endif /* ALLOW_OBCS */ |
| 432 |
|
| 433 |
#ifdef INCLUDE_CD_CODE |
| 434 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 435 |
idkey = iikey + 5 |
| 436 |
CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 437 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 438 |
CALL IMPLDIFF( |
| 439 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 440 |
I deltaTmom, KappaRU,recip_HFacW, |
| 441 |
U vVelD, |
| 442 |
I myThid ) |
| 443 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 444 |
idkey = iikey + 6 |
| 445 |
CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 446 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 447 |
CALL IMPLDIFF( |
| 448 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 449 |
I deltaTmom, KappaRV,recip_HFacS, |
| 450 |
U uVelD, |
| 451 |
I myThid ) |
| 452 |
#endif /* INCLUDE_CD_CODE */ |
| 453 |
C-- End If implicitViscosity.AND.momStepping |
| 454 |
ENDIF |
| 455 |
|
| 456 |
Cjmc : add for phiHyd output <- but not working if multi tile per CPU |
| 457 |
c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime) |
| 458 |
c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN |
| 459 |
c WRITE(suff,'(I10.10)') myIter+1 |
| 460 |
c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid) |
| 461 |
c ENDIF |
| 462 |
Cjmc(end) |
| 463 |
|
| 464 |
#ifdef ALLOW_TIMEAVE |
| 465 |
IF (taveFreq.GT.0.) THEN |
| 466 |
CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr, |
| 467 |
I deltaTclock, bi, bj, myThid) |
| 468 |
IF (ivdc_kappa.NE.0.) THEN |
| 469 |
CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr, |
| 470 |
I deltaTclock, bi, bj, myThid) |
| 471 |
ENDIF |
| 472 |
ENDIF |
| 473 |
#endif /* ALLOW_TIMEAVE */ |
| 474 |
|
| 475 |
ENDDO |
| 476 |
ENDDO |
| 477 |
|
| 478 |
#ifndef DISABLE_DEBUGMODE |
| 479 |
If (debugMode) THEN |
| 480 |
CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) |
| 481 |
CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) |
| 482 |
CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) |
| 483 |
CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) |
| 484 |
CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) |
| 485 |
CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) |
| 486 |
CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid) |
| 487 |
CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid) |
| 488 |
CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid) |
| 489 |
CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid) |
| 490 |
CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid) |
| 491 |
CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid) |
| 492 |
CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid) |
| 493 |
CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid) |
| 494 |
ENDIF |
| 495 |
#endif |
| 496 |
|
| 497 |
RETURN |
| 498 |
END |