function [psi, psimask] = mit_barostream(u,varargin) %function [psi, psimask] = mit_barostream(u,umask,dy,dz); % or %function [psi, psimask] = mit_barostream(u,gridinformation); % global barotropic stream function for mitgcm model, time slabs are % handled as cell objects, integration from north to the south (by % convention). % $Header: /home/ubuntu/mnt/e9_copy/MITgcm/verification/tutorial_global_oce_latlon/diags_matlab/mit_barostream.m,v 1.3 2006/08/12 20:25:12 jmc Exp $ % $Name: checkpoint63s $ if nargin == 2 g = varargin{1}; umask = g.umask; dy = g.dyg; dz = g.dz; elseif nargin == 4 umask = varargin{1}; dy = varargin{2}; dz = varargin{3}; else error('need 2 (one of which is the grid structure) or 4 arguments') end [nx ny nz] = size(umask); for kz=1:nz dydzs(:,:,kz) = (umask(:,:,kz).*dy)*dz(kz); end % mask for stream function pmask = change(squeeze(umask(:,:,1)),'==',NaN,0); % add psi-point to the north of all wet points pmask(1:nx,2:ny) = pmask(1:nx,2:ny)+pmask(1:nx,1:ny-1); pmask = change(pmask,'==',0,NaN); pmask = change(pmask,'~=',NaN,1); % integrate from the north to the south (by convention), change % integration direction by flipping the array ubar (transposed because % of MITgcm conventions) if iscell(u) nt = length(u); psi = cell(size(u)); for k=1:nt udxdz = change(u{k}.*dydzs,'==',NaN,0); ubar = squeeze(sum(udxdz,3)); psi{k} = fliplr(cumsum(fliplr(ubar),2)).*pmask; end else nt = size(u,4); psi = repmat(NaN,[nx ny nt]); udxdz = change(u.*repmat(dydzs,[1 1 1 nt]),'==',NaN,0); ubar = squeeze(sum(udxdz,3)); for kt = 1:nt psi(:,:,kt) = fliplr(cumsum(fliplr(squeeze(ubar(:,:,kt))),2)).*pmask; end end if nargout == 2 psimask = pmask; end return