C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/verification/tidal_basin_2d/code/external_forcing.F,v 1.3 2003/05/15 15:19:02 adcroft Exp $ C $Name: $ #include "CPP_OPTIONS.h" CBOP C !ROUTINE: EXTERNAL_FORCING_U C !INTERFACE: SUBROUTINE EXTERNAL_FORCING_U( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) C !DESCRIPTION: \bv C *==========================================================* C | S/R EXTERNAL_FORCING_U C | o Contains problem specific forcing for zonal velocity. C *==========================================================* C | Adds terms to gU for forcing by external sources C | e.g. wind stress, bottom friction etc.................. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global data == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #include "FFIELDS.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C iMin - Working range of tile for applying forcing. C iMax C jMin C jMax C kLev INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj _RL myCurrentTime INTEGER myThid C !LOCAL VARIABLES: C == Local variables == C Loop counters INTEGER I, J C number of surface interface layer INTEGER kSurface _RL tidal_freq,tidal_Hscale _RL Coord2longitude,longitud1,longitud2 CEOP if ( buoyancyRelation .eq. 'OCEANICP' ) then kSurface = Nr else kSurface = 1 endif C-- Forcing term C Add windstress momentum impulse into the top-layer IF ( kLev .EQ. kSurface ) THEN DO j=jMin,jMax DO i=iMin,iMax gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) & +foFacMom*surfaceTendencyU(i,j,bi,bj) & *_maskW(i,j,kLev,bi,bj) ENDDO ENDDO ENDIF C-- Tidal body force: written as gradient of geopotential C True M2 frequency is c tidal_freq=2.*pi/(43200.+25.*60.) C But for convenience we are using 12 hour period tidal_freq=2.*pi/(43200.) C Make the tide relatively strong (about 1 m) tidal_Hscale=10. IF ( usingCartesianGrid ) THEN Coord2longitude=1./rSphere ELSEIF ( usingSphericalPolarGrid ) THEN Coord2longitude=pi/180. ELSE STOP 'Be careful about 2D!' ENDIF DO j=jMin,jMax DO i=iMin+1,iMax longitud1=XC(i-1,j,bi,bj)*Coord2longitude longitud2=XC(i,j,bi,bj)*Coord2longitude gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) & +gravity*tidal_Hscale* & ( SIN( tidal_freq*myCurrentTime + 2.*longitud2 ) & -SIN( tidal_freq*myCurrentTime + 2.*longitud1 ) & )*recip_DXC(i,j,bi,bj) & *_maskW(i,j,kLev,bi,bj) c & *min( myCurrentTime/86400. , 1.) ENDDO ENDDO #if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) IF (useOBCS) THEN CALL OBCS_SPONGE_U( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) ENDIF #endif RETURN END CBOP C !ROUTINE: EXTERNAL_FORCING_V C !INTERFACE: SUBROUTINE EXTERNAL_FORCING_V( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) C !DESCRIPTION: \bv C *==========================================================* C | S/R EXTERNAL_FORCING_V C | o Contains problem specific forcing for merid velocity. C *==========================================================* C | Adds terms to gV for forcing by external sources C | e.g. wind stress, bottom friction etc.................. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global data == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #include "FFIELDS.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C iMin - Working range of tile for applying forcing. C iMax C jMin C jMax C kLev INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj _RL myCurrentTime INTEGER myThid C !LOCAL VARIABLES: C == Local variables == C Loop counters INTEGER I, J C number of surface interface layer INTEGER kSurface CEOP if ( buoyancyRelation .eq. 'OCEANICP' ) then kSurface = Nr else kSurface = 1 endif C-- Forcing term C Add windstress momentum impulse into the top-layer IF ( kLev .EQ. kSurface ) THEN DO j=jMin,jMax DO i=iMin,iMax gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) & +foFacMom*surfaceTendencyV(i,j,bi,bj) & *_maskS(i,j,kLev,bi,bj) ENDDO ENDDO ENDIF #if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) IF (useOBCS) THEN CALL OBCS_SPONGE_V( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) ENDIF #endif RETURN END CBOP C !ROUTINE: EXTERNAL_FORCING_T C !INTERFACE: SUBROUTINE EXTERNAL_FORCING_T( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) C !DESCRIPTION: \bv C *==========================================================* C | S/R EXTERNAL_FORCING_T C | o Contains problem specific forcing for temperature. C *==========================================================* C | Adds terms to gT for forcing by external sources C | e.g. heat flux, climatalogical relaxation.............. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global data == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #include "FFIELDS.h" #ifdef SHORTWAVE_HEATING integer two _RL minusone parameter (two=2,minusone=-1.) _RL swfracb(two) #endif C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C iMin - Working range of tile for applying forcing. C iMax C jMin C jMax C kLev INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj _RL myCurrentTime INTEGER myThid CEndOfInterface C !LOCAL VARIABLES: C == Local variables == C Loop counters INTEGER I, J C number of surface interface layer INTEGER kSurface CEOP if ( buoyancyRelation .eq. 'OCEANICP' ) then kSurface = Nr else kSurface = 1 endif C-- Forcing term C Add heat in top-layer IF ( kLev .EQ. kSurface ) THEN DO j=jMin,jMax DO i=iMin,iMax gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) & +maskC(i,j,kLev,bi,bj)*surfaceTendencyT(i,j,bi,bj) ENDDO ENDDO ENDIF #ifdef SHORTWAVE_HEATING C Penetrating SW radiation swfracb(1)=abs(rF(klev)) swfracb(2)=abs(rF(klev+1)) call SWFRAC( I two,minusone, I myCurrentTime,myThid, O swfracb) DO j=jMin,jMax DO i=iMin,iMax gT(i,j,klev,bi,bj) = gT(i,j,klev,bi,bj) & -maskC(i,j,klev,bi,bj)*Qsw(i,j,bi,bj)*(swfracb(1)-swfracb(2)) & *recip_Cp*recip_rhoConst*recip_drF(klev) ENDDO ENDDO #endif #if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) IF (useOBCS) THEN CALL OBCS_SPONGE_T( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) ENDIF #endif RETURN END CBOP C !ROUTINE: EXTERNAL_FORCING_S C !INTERFACE: SUBROUTINE EXTERNAL_FORCING_S( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) C !DESCRIPTION: \bv C *==========================================================* C | S/R EXTERNAL_FORCING_S C | o Contains problem specific forcing for merid velocity. C *==========================================================* C | Adds terms to gS for forcing by external sources C | e.g. fresh-water flux, climatalogical relaxation....... C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global data == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #include "FFIELDS.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C iMin - Working range of tile for applying forcing. C iMax C jMin C jMax C kLev INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj _RL myCurrentTime INTEGER myThid C !LOCAL VARIABLES: C == Local variables == C Loop counters INTEGER I, J C number of surface interface layer INTEGER kSurface CEOP if ( buoyancyRelation .eq. 'OCEANICP' ) then kSurface = Nr else kSurface = 1 endif C-- Forcing term C Add fresh-water in top-layer IF ( kLev .EQ. kSurface ) THEN DO j=jMin,jMax DO i=iMin,iMax gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) & +maskC(i,j,kLev,bi,bj)*surfaceTendencyS(i,j,bi,bj) ENDDO ENDDO ENDIF #if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) IF (useOBCS) THEN CALL OBCS_SPONGE_S( I iMin, iMax, jMin, jMax,bi,bj,kLev, I myCurrentTime,myThid) ENDIF #endif RETURN END