C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/verification/aim.5l_cs/code/Attic/mom_vi_coriolis.F,v 1.1 2002/01/09 00:28:56 jmc Exp $ C $Name: $ #include "CPP_OPTIONS.h" SUBROUTINE MOM_VI_CORIOLIS( I bi,bj,K, I uFld,vFld,omega3,hFacZ,r_hFacZ, O uCoriolisTerm,vCoriolisTerm, I myThid) IMPLICIT NONE C /==========================================================\ C | S/R VORTICITY_X_V | C |==========================================================| C \==========================================================/ C == Global variables == #include "SIZE.h" #include "EEPARAMS.h" #include "GRID.h" #include "PARAMS.h" C == Routine arguments == INTEGER bi,bj,K _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uCoriolisTerm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vCoriolisTerm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER myThid C == Local variables == INTEGER I,J _RL vBarXY,uBarXY,vort3u,vort3v _RS epsil epsil = 1. _d -9 IF (useJamartWetPoints) THEN C- Partial-cell generalization of the Wet-point average method : DO J=1-Oly,sNy+Oly-1 DO I=2-Olx,sNx+Olx c vBarXY=0.25*(vFld( i ,j)+vFld( i ,j+1) c & +vFld(i-1,j)+vFld(i-1,j+1)) vBarXY=( & vFld( i , j )*dxG( i , j ,bi,bj)*hFacS( i , j ,k,bi,bj) & +vFld( i ,j+1)*dxG( i ,j+1,bi,bj)*hFacS( i ,j+1,k,bi,bj) & +vFld(i-1, j )*dxG(i-1, j ,bi,bj)*hFacS(i-1, j ,k,bi,bj) & +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj)*hFacS(i-1,j+1,k,bi,bj) ) & / MAX( epsil, hFacS( i , j ,k,bi,bj)+hFacS(i-1, j ,k,bi,bj) & +hFacS( i ,j+1,k,bi,bj)+hFacS(i-1,j+1,k,bi,bj) ) uCoriolisTerm(i,j)= & +0.5*( fCoriG(i,j,bi,bj)+fCoriG(i,j+1,bi,bj) & )*vBarXY*recip_dxC(i,j,bi,bj)*_maskW(I,J,K,bi,bj) C original version: c vort3u=0.5*(omega3(i,j)+omega3(i,j+1)) c vort3u=0.5*(omega3(i,j)*r_hFacZ(i,j) c & +omega3(i,j+1)*r_hFacZ(i,j+1)) c uCoriolisTerm(i,j)= c & +0.5*( fCoriG(i,j,bi,bj)*r_hFacZ(i,j) c & +fCoriG(i,j+1,bi,bj)*r_hFacZ(i,j+1) c & )*vBarXY*recip_dxC(i,j,bi,bj)*_maskW(I,J,K,bi,bj) cph *note* put these comments after end of continued line cph to ensure TAMC compatibility C high order vorticity advection term c & +vort3u*vBarXY*recip_dxc(i,j,bi,bj) C linear Coriolis term (enstrophy conserving) c & ... C full nonlinear Coriolis term c & +0.5*(omega3(i,j)+omega3(i,j+1))*vBarXY C correct energy conserving form of Coriolis term c & +0.25*( fCori( i ,j,bi,bj)*(vFld( i ,j)+vFld( i ,j+1)) + c & fCori(i-1,j,bi,bj)*(vFld(i-1,j)+vFld(i-1,j+1)) ) C original form of Coriolis term (copied from calc_mom_rhs) c & +0.5*(fCori(i,j,bi,bj)+fCori(i-1,j,bi,bj))*vBarXY ENDDO ENDDO ELSE C- Simple average, no hFac : DO J=1-Oly,sNy+Oly-1 DO I=2-Olx,sNx+Olx vBarXY=0.25*( & vFld( i , j )*dxG( i , j ,bi,bj) & +vFld( i ,j+1)*dxG( i ,j+1,bi,bj) & +vFld(i-1, j )*dxG(i-1, j ,bi,bj) & +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj) ) uCoriolisTerm(i,j)= & +0.5*( fCoriG(i,j,bi,bj)+fCoriG(i,j+1,bi,bj) & )*vBarXY*recip_dxC(i,j,bi,bj)*_maskW(I,J,K,bi,bj) ENDDO ENDDO ENDIF IF (useJamartWetPoints) THEN C- Partial-cell generalization of the Wet-point average method : DO J=2-Oly,sNy+Oly DO I=1-Olx,sNx+Olx-1 c uBarXY=0.25*( uFld(i, j )+uFld(i+1, j ) c & +uFld(i,j-1)+uFld(i+1,j-1)) uBarXY=( & uFld( i , j )*dyG( i , j ,bi,bj)*hFacW( i , j ,k,bi,bj) & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj)*hFacW( i ,j-1,k,bi,bj) & +uFld(i+1, j )*dyG(i+1, j ,bi,bj)*hFacW(i+1, j ,k,bi,bj) & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj)*hFacW(i+1,j-1,k,bi,bj) ) & / MAX( epsil, hFacW( i , j ,k,bi,bj)+hFacW( i ,j-1,k,bi,bj) & +hFacW(i+1, j ,k,bi,bj)+hFacW(i+1,j-1,k,bi,bj) ) vCoriolisTerm(i,j)= & -0.5*( fCoriG(i,j,bi,bj)+fCoriG(i+1,j,bi,bj) & )*uBarXY*recip_dyC(i,j,bi,bj)*_maskS(I,J,K,bi,bj) C original version: c vort3v=0.5*(omega3(i,j)+omega3(i+1,j)) c vort3v=0.5*(omega3(i,j)*r_hFacZ(i,j) c & +omega3(i+1,j)*r_hFacZ(i+1,j)) c vCoriolisTerm(i,j)= c & -0.5*( fCoriG(i,j,bi,bj)*r_hFacZ(i,j) c & +fCoriG(i+1,j,bi,bj)*r_hFacZ(i+1,j) c & )*uBarXY*recip_dyC(i,j,bi,bj)*_maskS(I,J,K,bi,bj) cph *note* put these comments after end of continued line cph to ensure TAMC compatibility C high order vorticity advection term c & -vort3v*uBarXY*recip_dyc(i,j,bi,bj) C linear Coriolis term (enstrophy conserving) c & ... C full nonlinear Coriolis term c & -0.5*(omega3(i,j)+omega3(i+1,j))*uBarXY C correct energy conserving form of Coriolis term c & -0.25*( fCori(i,j ,bi,bj)*(uFld(i, j )+uFld(i+1,j)) + c & fCori(i,j-1,bi,bj)*(uFld(i,j-1)+uFld(i+1,j)) ) C original form of Coriolis term (copied from calc_mom_rhs) c & -0.5*(fCori(i,j,bi,bj)+fCori(i,j-1,bi,bj))*uBarXY ENDDO ENDDO ELSE C- Simple average, no hFac : DO J=2-Oly,sNy+Oly DO I=1-Olx,sNx+Olx-1 uBarXY=0.25*( & uFld( i , j )*dyG( i , j ,bi,bj) & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj) & +uFld(i+1, j )*dyG(i+1, j ,bi,bj) & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj) ) vCoriolisTerm(i,j)= & -0.5*( fCoriG(i,j,bi,bj)+fCoriG(i+1,j,bi,bj) & )*uBarXY*recip_dyC(i,j,bi,bj)*_maskS(I,J,K,bi,bj) ENDDO ENDDO ENDIF RETURN END