/[MITgcm]/MITgcm/verification/aim.5l_cs/code/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/verification/aim.5l_cs/code/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.6 - (show annotations) (download)
Sun Aug 3 03:40:27 2003 UTC (20 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: HEAD
Changes since 1.5: +1 -1 lines
FILE REMOVED
use the standard version of these S/R

1 C $Header: /u/gcmpack/MITgcm/verification/aim.5l_cs/code/mom_vecinv.F,v 1.5 2003/07/13 19:26:05 jmc Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 SUBROUTINE MOM_VECINV(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
8 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
9 U fVerU, fVerV,
10 I myCurrentTime, myIter, myThid)
11 C /==========================================================\
12 C | S/R MOM_VECINV |
13 C | o Form the right hand-side of the momentum equation. |
14 C |==========================================================|
15 C | Terms are evaluated one layer at a time working from |
16 C | the bottom to the top. The vertically integrated |
17 C | barotropic flow tendency term is evluated by summing the |
18 C | tendencies. |
19 C | Notes: |
20 C | We have not sorted out an entirely satisfactory formula |
21 C | for the diffusion equation bc with lopping. The present |
22 C | form produces a diffusive flux that does not scale with |
23 C | open-area. Need to do something to solidfy this and to |
24 C | deal "properly" with thin walls. |
25 C \==========================================================/
26 IMPLICIT NONE
27
28 C == Global variables ==
29 #include "SIZE.h"
30 #include "DYNVARS.h"
31 #include "EEPARAMS.h"
32 #include "PARAMS.h"
33 #include "GRID.h"
34
35 C == Routine arguments ==
36 C fVerU - Flux of momentum in the vertical
37 C fVerV direction out of the upper face of a cell K
38 C ( flux into the cell above ).
39 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
40 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
41 C results will be set.
42 C kUp, kDown - Index for upper and lower layers.
43 C myThid - Instance number for this innvocation of CALC_MOM_RHS
44 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
45 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
46 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
47 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
48 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
49 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
50 INTEGER kUp,kDown
51 _RL myCurrentTime
52 INTEGER myIter
53 INTEGER myThid
54 INTEGER bi,bj,iMin,iMax,jMin,jMax
55
56 C == Functions ==
57 LOGICAL DIFFERENT_MULTIPLE
58 EXTERNAL DIFFERENT_MULTIPLE
59
60 C == Local variables ==
61 _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
62 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
63 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
64 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66 _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 C I,J,K - Loop counters
85 INTEGER i,j,k
86 C rVelMaskOverride - Factor for imposing special surface boundary conditions
87 C ( set according to free-surface condition ).
88 C hFacROpen - Lopped cell factos used tohold fraction of open
89 C hFacRClosed and closed cell wall.
90 _RL rVelMaskOverride
91 C xxxFac - On-off tracer parameters used for switching terms off.
92 _RL uDudxFac
93 _RL AhDudxFac
94 _RL A4DuxxdxFac
95 _RL vDudyFac
96 _RL AhDudyFac
97 _RL A4DuyydyFac
98 _RL rVelDudrFac
99 _RL ArDudrFac
100 _RL fuFac
101 _RL phxFac
102 _RL mtFacU
103 _RL uDvdxFac
104 _RL AhDvdxFac
105 _RL A4DvxxdxFac
106 _RL vDvdyFac
107 _RL AhDvdyFac
108 _RL A4DvyydyFac
109 _RL rVelDvdrFac
110 _RL ArDvdrFac
111 _RL fvFac
112 _RL phyFac
113 _RL vForcFac
114 _RL mtFacV
115 INTEGER km1,kp1
116 _RL wVelBottomOverride
117 LOGICAL bottomDragTerms
118 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122
123 km1=MAX(1,k-1)
124 kp1=MIN(Nr,k+1)
125 rVelMaskOverride=1.
126 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
127 wVelBottomOverride=1.
128 IF (k.EQ.Nr) wVelBottomOverride=0.
129
130 C Initialise intermediate terms
131 DO J=1-OLy,sNy+OLy
132 DO I=1-OLx,sNx+OLx
133 aF(i,j) = 0.
134 vF(i,j) = 0.
135 vrF(i,j) = 0.
136 uCf(i,j) = 0.
137 vCf(i,j) = 0.
138 mT(i,j) = 0.
139 pF(i,j) = 0.
140 del2u(i,j) = 0.
141 del2v(i,j) = 0.
142 dStar(i,j) = 0.
143 zStar(i,j) = 0.
144 uDiss(i,j) = 0.
145 vDiss(i,j) = 0.
146 vort3(i,j) = 0.
147 omega3(i,j) = 0.
148 ke(i,j) = 0.
149 ENDDO
150 ENDDO
151
152 C-- Term by term tracer parmeters
153 C o U momentum equation
154 uDudxFac = afFacMom*1.
155 AhDudxFac = vfFacMom*1.
156 A4DuxxdxFac = vfFacMom*1.
157 vDudyFac = afFacMom*1.
158 AhDudyFac = vfFacMom*1.
159 A4DuyydyFac = vfFacMom*1.
160 rVelDudrFac = afFacMom*1.
161 ArDudrFac = vfFacMom*1.
162 mTFacU = mtFacMom*1.
163 fuFac = cfFacMom*1.
164 phxFac = pfFacMom*1.
165 C o V momentum equation
166 uDvdxFac = afFacMom*1.
167 AhDvdxFac = vfFacMom*1.
168 A4DvxxdxFac = vfFacMom*1.
169 vDvdyFac = afFacMom*1.
170 AhDvdyFac = vfFacMom*1.
171 A4DvyydyFac = vfFacMom*1.
172 rVelDvdrFac = afFacMom*1.
173 ArDvdrFac = vfFacMom*1.
174 mTFacV = mtFacMom*1.
175 fvFac = cfFacMom*1.
176 phyFac = pfFacMom*1.
177 vForcFac = foFacMom*1.
178
179 IF ( no_slip_bottom
180 & .OR. bottomDragQuadratic.NE.0.
181 & .OR. bottomDragLinear.NE.0.) THEN
182 bottomDragTerms=.TRUE.
183 ELSE
184 bottomDragTerms=.FALSE.
185 ENDIF
186
187 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
188 IF (staggerTimeStep) THEN
189 phxFac = 0.
190 phyFac = 0.
191 ENDIF
192
193 C-- Calculate open water fraction at vorticity points
194 c CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
195
196 C---- Calculate common quantities used in both U and V equations
197 C Calculate tracer cell face open areas
198 DO j=1-OLy,sNy+OLy
199 DO i=1-OLx,sNx+OLx
200 xA(i,j) = _dyG(i,j,bi,bj)
201 & *drF(k)*_hFacW(i,j,k,bi,bj)
202 yA(i,j) = _dxG(i,j,bi,bj)
203 & *drF(k)*_hFacS(i,j,k,bi,bj)
204 ENDDO
205 ENDDO
206
207 C Make local copies of horizontal flow field
208 DO j=1-OLy,sNy+OLy
209 DO i=1-OLx,sNx+OLx
210 uFld(i,j) = uVel(i,j,k,bi,bj)
211 vFld(i,j) = vVel(i,j,k,bi,bj)
212 ENDDO
213 ENDDO
214
215 C Calculate velocity field "volume transports" through tracer cell faces.
216 DO j=1-OLy,sNy+OLy
217 DO i=1-OLx,sNx+OLx
218 uTrans(i,j) = uFld(i,j)*xA(i,j)
219 vTrans(i,j) = vFld(i,j)*yA(i,j)
220 ENDDO
221 ENDDO
222
223 C note (jmc) : Dissipation and Vort3 advection do not necesary
224 C use the same maskZ (and hFacZ) => needs 2 call(s)
225 CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
226
227 CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
228
229 CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid)
230
231 CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
232
233 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
234
235 IF (momViscosity) THEN
236 C Calculate del^2 u and del^2 v for bi-harmonic term
237 IF (viscA4.NE.0.) THEN
238 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
239 O del2u,del2v,
240 & myThid)
241 CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid)
242 CALL MOM_VI_CALC_RELVORT3(
243 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
244 ENDIF
245 C Calculate dissipation terms for U and V equations
246 C in terms of vorticity and divergence
247 IF (viscAh.NE.0. .OR. viscA4.NE.0.) THEN
248 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
249 O uDiss,vDiss,
250 & myThid)
251 ENDIF
252 C or in terms of tension and strain
253 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
254 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
255 O tension,
256 I myThid)
257 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
258 O strain,
259 I myThid)
260 CALL MOM_HDISSIP(bi,bj,k,
261 I tension,strain,hFacZ,viscAtension,viscAstrain,
262 O uDiss,vDiss,
263 I myThid)
264 ENDIF
265 ENDIF
266
267 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
268 CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
269
270 C---- Zonal momentum equation starts here
271
272 C-- Vertical flux (fVer is at upper face of "u" cell)
273
274 C Eddy component of vertical flux (interior component only) -> vrF
275 IF (momViscosity.AND..NOT.implicitViscosity)
276 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
277
278 C Combine fluxes
279 DO j=jMin,jMax
280 DO i=iMin,iMax
281 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
282 ENDDO
283 ENDDO
284
285 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
286 DO j=2-Oly,sNy+Oly-1
287 DO i=2-Olx,sNx+Olx-1
288 gU(i,j,k,bi,bj) = uDiss(i,j)
289 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
290 & *recip_rAw(i,j,bi,bj)
291 & *(
292 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
293 & )
294 & - phxFac*dPhiHydX(i,j)
295 ENDDO
296 ENDDO
297
298 C-- No-slip and drag BCs appear as body forces in cell abutting topography
299 IF (momViscosity.AND.no_slip_sides) THEN
300 C- No-slip BCs impose a drag at walls...
301 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
302 DO j=jMin,jMax
303 DO i=iMin,iMax
304 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
305 ENDDO
306 ENDDO
307 ENDIF
308 C- No-slip BCs impose a drag at bottom
309 IF (momViscosity.AND.bottomDragTerms) THEN
310 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
311 DO j=jMin,jMax
312 DO i=iMin,iMax
313 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
314 ENDDO
315 ENDDO
316 ENDIF
317
318 C-- Forcing term (moved to timestep.F)
319 c IF (momForcing)
320 c & CALL EXTERNAL_FORCING_U(
321 c I iMin,iMax,jMin,jMax,bi,bj,k,
322 c I myCurrentTime,myThid)
323
324 C-- Metric terms for curvilinear grid systems
325 c IF (usingSphericalPolarMTerms) THEN
326 C o Spherical polar grid metric terms
327 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
328 c DO j=jMin,jMax
329 c DO i=iMin,iMax
330 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
331 c ENDDO
332 c ENDDO
333 c ENDIF
334
335
336 C---- Meridional momentum equation starts here
337
338 C-- Vertical flux (fVer is at upper face of "v" cell)
339
340 C Eddy component of vertical flux (interior component only) -> vrF
341 IF (momViscosity.AND..NOT.implicitViscosity)
342 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
343
344 C Combine fluxes -> fVerV
345 DO j=jMin,jMax
346 DO i=iMin,iMax
347 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
348 ENDDO
349 ENDDO
350
351 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
352 DO j=jMin,jMax
353 DO i=iMin,iMax
354 gV(i,j,k,bi,bj) = vDiss(i,j)
355 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
356 & *recip_rAs(i,j,bi,bj)
357 & *(
358 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
359 & )
360 & - phyFac*dPhiHydY(i,j)
361 ENDDO
362 ENDDO
363
364 C-- No-slip and drag BCs appear as body forces in cell abutting topography
365 IF (momViscosity.AND.no_slip_sides) THEN
366 C- No-slip BCs impose a drag at walls...
367 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
368 DO j=jMin,jMax
369 DO i=iMin,iMax
370 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
371 ENDDO
372 ENDDO
373 ENDIF
374 C- No-slip BCs impose a drag at bottom
375 IF (momViscosity.AND.bottomDragTerms) THEN
376 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
377 DO j=jMin,jMax
378 DO i=iMin,iMax
379 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
380 ENDDO
381 ENDDO
382 ENDIF
383
384 C-- Forcing term (moved to timestep.F)
385 c IF (momForcing)
386 c & CALL EXTERNAL_FORCING_V(
387 c I iMin,iMax,jMin,jMax,bi,bj,k,
388 c I myCurrentTime,myThid)
389
390 C-- Metric terms for curvilinear grid systems
391 c IF (usingSphericalPolarMTerms) THEN
392 C o Spherical polar grid metric terms
393 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
394 c DO j=jMin,jMax
395 c DO i=iMin,iMax
396 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
397 c ENDDO
398 c ENDDO
399 c ENDIF
400
401 C-- Horizontal Coriolis terms
402 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
403 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
404 & uCf,vCf,myThid)
405 DO j=jMin,jMax
406 DO i=iMin,iMax
407 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
408 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
409 ENDDO
410 ENDDO
411 ENDIF
412
413 IF (momAdvection) THEN
414 C- moved before calling U,V _SIDEDRAG:
415 c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
416 C-- Horizontal advection of relative vorticity
417 c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
418 CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,vort3,hFacZ,r_hFacZ,
419 & uCf,myThid)
420 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
421 DO j=jMin,jMax
422 DO i=iMin,iMax
423 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
424 ENDDO
425 ENDDO
426 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
427 CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,vort3,hFacZ,r_hFacZ,
428 & vCf,myThid)
429 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
430 DO j=jMin,jMax
431 DO i=iMin,iMax
432 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
433 ENDDO
434 ENDDO
435
436 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
437 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
438 DO j=jMin,jMax
439 DO i=iMin,iMax
440 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
441 ENDDO
442 ENDDO
443 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
444 DO j=jMin,jMax
445 DO i=iMin,iMax
446 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
447 ENDDO
448 ENDDO
449
450 C-- Bernoulli term
451 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
452 DO j=jMin,jMax
453 DO i=iMin,iMax
454 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
455 ENDDO
456 ENDDO
457 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
458 DO j=jMin,jMax
459 DO i=iMin,iMax
460 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
461 ENDDO
462 ENDDO
463 C-- end if momAdvection
464 ENDIF
465
466 C-- Set du/dt & dv/dt on boundaries to zero
467 DO j=jMin,jMax
468 DO i=iMin,iMax
469 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
470 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
471 ENDDO
472 ENDDO
473
474
475 IF (
476 & DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,
477 & myCurrentTime-deltaTClock)
478 & ) THEN
479 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
480 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
481 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
482 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
483 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
484 CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
485 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
486 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
487 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
488 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
489 ENDIF
490
491 RETURN
492 END

  ViewVC Help
Powered by ViewVC 1.1.22