C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/verification/aim.5l_cs/code/Attic/calc_gs.F,v 1.1 2001/06/18 17:40:06 cnh Exp $ C $Name: $ #include "CPP_OPTIONS.h" #define COSINEMETH_III #undef ISOTROPIC_COS_SCALING #define USE_3RD_O_ADVEC CStartOfInterFace SUBROUTINE CALC_GS( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp, I KappaRS, U fVerS, I myCurrentTime, myThid ) C /==========================================================\ C | SUBROUTINE CALC_GS | C | o Calculate the salt tendency terms. | C |==========================================================| C | A procedure called EXTERNAL_FORCING_S is called from | C | here. These procedures can be used to add per problem | C | E-P flux source terms. | C | Note: Although it is slightly counter-intuitive the | C | EXTERNAL_FORCING routine is not the place to put | C | file I/O. Instead files that are required to | C | calculate the external source terms are generally | C | read during the model main loop. This makes the | C | logisitics of multi-processing simpler and also | C | makes the adjoint generation simpler. It also | C | allows for I/O to overlap computation where that | C | is supported by hardware. | C | Aside from the problem specific term the code here | C | forms the tendency terms due to advection and mixing | C | The baseline implementation here uses a centered | C | difference form for the advection term and a tensorial | C | divergence of a flux form for the diffusive term. The | C | diffusive term is formulated so that isopycnal mixing and| C | GM-style subgrid-scale terms can be incorporated b simply| C | setting the diffusion tensor terms appropriately. | C \==========================================================/ IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "DYNVARS.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "FFIELDS.h" C == Routine arguments == C fVerS - Flux of salt (S) in the vertical C direction at the upper(U) and lower(D) faces of a cell. C maskUp - Land mask used to denote base of the domain. C xA - Tracer cell face area normal to X C yA - Tracer cell face area normal to X C uTrans - Zonal volume transport through cell face C vTrans - Meridional volume transport through cell face C rTrans - Vertical volume transport through cell face C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation C results will be set. C myThid - Instance number for this innvocation of CALC_GT _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaRS(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER k,kUp,kDown,kM1 INTEGER bi,bj,iMin,iMax,jMin,jMax _RL myCurrentTime INTEGER myThid CEndOfInterface C == Local variables == C I, J, K - Loop counters C tauUpwH - Horizontal upwind weight : 1=Upwind ; 0=Centered C tauUpwV - Vertical upwind weight : 1=Upwind ; 0=Centered INTEGER i,j LOGICAL TOP_LAYER _RL afFacS, dfFacS _RL tauUpwH, tauUpwV _RL df4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy) c_jmc: _RL ddx(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL d2dx2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL ddy(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL d2dy2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiLo(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiHi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dist c_jmc. #ifdef ALLOW_AUTODIFF_TAMC C-- only the kUp part of fverS is set in this subroutine C-- the kDown is still required fVerS(1,1,kDown) = fVerS(1,1,kDown) #endif DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fZon(i,j) = 0.0 fMer(i,j) = 0.0 fVerS(i,j,kUp) = 0.0 ENDDO ENDDO afFacS = 1. _d 0 dfFacS = 1. _d 0 tauUpwH = 1. _d 0 tauUpwV = 1. _d 0 TOP_LAYER = K .EQ. 1 C--- Calculate advective and diffusive fluxes between cells. C o Zonal tracer gradient DO j=1-Oly,sNy+Oly DO i=1-Olx+1,sNx+Olx fZon(i,j) = _recip_dxC(i,j,bi,bj)*xA(i,j) & *(salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj)) #ifdef COSINEMETH_III & *sqCosFacU(j,bi,bj) #endif ENDDO ENDDO C o Meridional tracer gradient DO j=1-Oly+1,sNy+Oly DO i=1-Olx,sNx+Olx fMer(i,j) = _recip_dyC(i,j,bi,bj)*yA(i,j) & *(salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj)) #ifdef ISOTROPIC_COS_SCALING #ifdef COSINEMETH_III & *sqCosFacV(j,bi,bj) #endif #endif ENDDO ENDDO C-- del^2 of S, needed for bi-harmonic (del^4) term IF (diffK4S .NE. 0.) THEN DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 df4(i,j)= _recip_hFacC(i,j,k,bi,bj) & *recip_drF(k)/_rA(i,j,bi,bj) & *( & +( fZon(i+1,j)-fZon(i,j) ) & +( fMer(i,j+1)-fMer(i,j) ) & ) ENDDO ENDDO ENDIF C-- Zonal flux (fZon is at west face of "salt" cell) c---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| #ifdef USE_3RD_O_ADVEC C o Advective component of zonal flux, 3rd order Advec Scheme DO j=jMin,jMax DO i=1-OLx+1,sNx+OLx ddx(i,j) = (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj)) & *_recip_dxC(i,j,bi,bj)*_maskW(i,j,k,bi,bj) ENDDO ENDDO DO j=jMin,jMax DO i=1-OLx,sNx+OLx-1 d2dx2(i,j) = ( ddx(i+1,j)-ddx(i,j) ) & *_recip_dxF(i,j,bi,bj)*maskC(i,j,k,bi,bj) ENDDO ENDDO DO j=jMin,jMax DO i=1-OLx+1,sNx+OLx dist = _dxF(i-1,j,bi,bj)*0.5 _d 0 phiLo(i,j) = salt(i-1,j,k,bi,bj) & +dist & *( ddx(i ,j)+ddx(i-1,j) )*0.5 _d 0 & +0.5 _d 0*dist*dist & *d2dx2(i-1,j) dist = -_dxF(i,j,bi,bj)*0.5 _d 0 phiHi(i,j) = salt(i,j,k,bi,bj) & +dist & *( ddx(i+1,j)+ddx(i ,j) )*0.5 _d 0 & +0.5 _d 0*dist*dist & *d2dx2(i,j) ENDDO ENDDO DO j=jMin,jMax DO i=1-OLx,sNx+OLx IF ( uTrans(i,j) .GT. 0. ) THEN af(i,j) = uTrans(i,j)*phiLo(i,j) ELSE af(i,j) = uTrans(i,j)*phiHi(i,j) ENDIF ENDDO ENDDO #else C o Advective component of zonal flux, 1rst & 2nd order Advec Scheme IF (tauUpwH.EQ.0. _d 0) THEN C Centered scheme : DO j=jMin,jMax DO i=iMin,iMax af(i,j) = uTrans(i,j)* & (salt(i-1,j,k,bi,bj)+salt(i,j,k,bi,bj))*0.5 _d 0 ENDDO ENDDO ELSE C Upwind weighted scheme : DO j=jMin,jMax DO i=iMin,iMax af(i,j) = uTrans(i,j)* & (salt(i-1,j,k,bi,bj)+salt(i,j,k,bi,bj))*0.5 _d 0 & +tauUpwH*abs(uTrans(i,j))* & (salt(i-1,j,k,bi,bj)-salt(i,j,k,bi,bj))*0.5 _d 0 ENDDO ENDDO ENDIF #endif c---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C o Diffusive component of zonal flux DO j=jMin,jMax DO i=iMin,iMax df(i,j) = -diffKhS*xA(i,j)*_recip_dxC(i,j,bi,bj)* & (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj)) & *CosFacU(j,bi,bj) ENDDO ENDDO #ifdef ALLOW_GMREDI IF (useGMRedi) CALL GMREDI_XTRANSPORT( I iMin,iMax,jMin,jMax,bi,bj,K, I xA,salt, U df, I myThid) #endif C o Add the bi-harmonic contribution IF (diffK4S .NE. 0.) THEN DO j=jMin,jMax DO i=iMin,iMax df(i,j) = df(i,j) + xA(i,j)* & diffK4S*(df4(i,j)-df4(i-1,j))*_recip_dxC(i,j,bi,bj) #ifdef COSINEMETH_III & *sqCosFacU(j,bi,bj) #else & *CosFacU(j,bi,bj) #endif ENDDO ENDDO ENDIF C Net zonal flux DO j=jMin,jMax DO i=iMin,iMax fZon(i,j) = afFacS*af(i,j) + dfFacS*df(i,j) ENDDO ENDDO C-- Meridional flux (fMer is at south face of "salt" cell) c---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| #ifdef USE_3RD_O_ADVEC C o Advective component of meridional flux, 3rd order Advec Scheme DO j=jMin,jMax DO i=iMin,iMax ddy(i,j) = (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj)) & *_recip_dyC(i,j,bi,bj)*_maskS(i,j,k,bi,bj) ENDDO ENDDO DO j=jMin,jMax DO i=iMin,iMax d2dy2(i,j) = ( ddy(i,j+1)-ddy(i,j) ) & *_recip_dyF(i,j,bi,bj)*maskC(i,j,k,bi,bj) ENDDO ENDDO DO j=jMin,jMax DO i=iMin,iMax dist = _dyF(i,j-1,bi,bj)*0.5 _d 0 phiLo(i,j) = salt(i,j-1,k,bi,bj) & +dist & *( ddy(i ,j)+ddy(i,j-1) )*0.5 _d 0 & +0.5 _d 0*dist*dist & *d2dy2(i,j-1) dist = -_dyF(i,j,bi,bj)*0.5 _d 0 phiHi(i,j) = salt(i,j,k,bi,bj) & +dist & *( ddy(i,j+1)+ddy(i ,j) )*0.5 _d 0 & +0.5 _d 0*dist*dist & *d2dy2(i,j) ENDDO ENDDO DO j=jMin,jMax DO i=iMin,iMax IF ( vTrans(i,j) .GT. 0. ) THEN af(i,j) = vTrans(i,j)*phiLo(i,j) ELSE af(i,j) = vTrans(i,j)*phiHi(i,j) ENDIF ENDDO ENDDO #else C o Advective component of meridional flux, 1rst & 2nd order Advec Scheme IF (tauUpwH.EQ.0. _d 0) THEN C Centered scheme : DO j=jMin,jMax DO i=iMin,iMax af(i,j) = vTrans(i,j)* & (salt(i,j-1,k,bi,bj)+salt(i,j,k,bi,bj))*0.5 _d 0 ENDDO ENDDO ELSE C Upwind weighted scheme : DO j=jMin,jMax DO i=iMin,iMax af(i,j) = vTrans(i,j)* & (salt(i,j-1,k,bi,bj)+salt(i,j,k,bi,bj))*0.5 _d 0 & +tauUpwH*abs(vTrans(i,j))* & (salt(i,j-1,k,bi,bj)-salt(i,j,k,bi,bj))*0.5 _d 0 ENDDO ENDDO ENDIF #endif c---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C o Diffusive component of meridional flux DO j=jMin,jMax DO i=iMin,iMax df(i,j) = -diffKhS*yA(i,j)*_recip_dyC(i,j,bi,bj)* & (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj)) & *CosFacV(j,bi,bj) ENDDO ENDDO #ifdef ALLOW_GMREDI IF (useGMRedi) CALL GMREDI_YTRANSPORT( I iMin,iMax,jMin,jMax,bi,bj,K, I yA,salt, U df, I myThid) #endif C o Add the bi-harmonic contribution IF (diffK4S .NE. 0.) THEN DO j=jMin,jMax DO i=iMin,iMax df(i,j) = df(i,j) + yA(i,j)* & diffK4S*(df4(i,j)-df4(i,j-1))*_recip_dyC(i,j,bi,bj) #ifdef ISOTROPIC_COS_SCALING #ifdef COSINEMETH_III & *sqCosFacV(j,bi,bj) #else & *CosFacV(j,bi,bj) #endif #endif ENDDO ENDDO ENDIF C Net meridional flux DO j=jMin,jMax DO i=iMin,iMax fMer(i,j) = afFacS*af(i,j) + dfFacS*df(i,j) ENDDO ENDDO C-- Vertical flux ( fVerS(,,kUp) is at upper face of "Tracer" cell ) C o Advective component of vertical flux : assume W_bottom=0 (mask) C Note: For K=1 then KM1=1 this gives a barZ(S) = S C (this plays the role of the free-surface correction for k=1) IF ( rigidLid .AND. TOP_LAYER) THEN DO j=jMin,jMax DO i=iMin,iMax af(i,j) = 0. ENDDO ENDDO ELSE IF (tauUpwV.EQ.0. _d 0) THEN C Centered scheme : DO j=jMin,jMax DO i=iMin,iMax af(i,j) = rTrans(i,j)* & (salt(i,j,k,bi,bj)+salt(i,j,kM1,bi,bj))*0.5 _d 0 ENDDO ENDDO ELSE C Upwind weighted scheme : DO j=jMin,jMax DO i=iMin,iMax af(i,j) = rTrans(i,j)* & (salt(i,j,k,bi,bj)+salt(i,j,kM1,bi,bj))*0.5 _d 0 & +tauUpwV*abs(rTrans(i,j))* & (salt(i,j,k,bi,bj)-salt(i,j,kM1,bi,bj))*0.5 _d 0 ENDDO ENDDO ENDIF IF (.NOT.rigidLid ) THEN C free-surface correction for k > 1 DO j=jMin,jMax DO i=iMin,iMax af(i,j) = af(i,j)*maskC(i,j,kM1,bi,bj) & +rTrans(i,j)*(maskC(i,j,k,bi,bj)-maskC(i,j,kM1,bi,bj))* & salt(i,j,k,bi,bj) ENDDO ENDDO ENDIF ENDIF C o Diffusive component of vertical flux C Note: For K=1 then KM1=1 and this gives a dS/dr = 0 upper C boundary condition. IF (implicitDiffusion) THEN DO j=jMin,jMax DO i=iMin,iMax df(i,j) = 0. ENDDO ENDDO ELSE DO j=jMin,jMax DO i=iMin,iMax df(i,j) = - _rA(i,j,bi,bj)*( & KappaRS(i,j,k)*recip_drC(k) & *(salt(i,j,kM1,bi,bj)-salt(i,j,k,bi,bj))*rkFac & ) ENDDO ENDDO ENDIF #ifdef ALLOW_GMREDI IF (useGMRedi) CALL GMREDI_RTRANSPORT( I iMin,iMax,jMin,jMax,bi,bj,K, I maskUp,salt, U df, I myThid) #endif #ifdef ALLOW_KPP C-- Add non-local KPP transport term (ghat) to diffusive salt flux. IF (useKPP) CALL KPP_TRANSPORT_S( I iMin,iMax,jMin,jMax,bi,bj,k,km1, I KappaRS, U df ) #endif C Net vertical flux DO j=jMin,jMax DO i=iMin,iMax fVerS(i,j,kUp) = afFacS*af(i,j) + dfFacS*df(i,j)*maskUp(i,j) ENDDO ENDDO C-- Tendency is minus divergence of the fluxes. C Note. Tendency terms will only be correct for range C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points C will contain valid floating point numbers but C they are not algorithmically correct. These points C are not used. DO j=jMin,jMax DO i=iMin,iMax #define _recip_VolS1(i,j,k,bi,bj) _recip_hFacC(i,j,k,bi,bj)*recip_drF(k) #define _recip_VolS2(i,j,k,bi,bj) /_rA(i,j,bi,bj) gS(i,j,k,bi,bj)= & -_recip_VolS1(i,j,k,bi,bj) & _recip_VolS2(i,j,k,bi,bj) & *( & +( fZon(i+1,j)-fZon(i,j) ) & +( fMer(i,j+1)-fMer(i,j) ) & +( fVerS(i,j,kUp)-fVerS(i,j,kDown) )*rkFac & ) ENDDO ENDDO C-- External forcing term(s) CALL EXTERNAL_FORCING_S( I iMin,iMax,jMin,jMax,bi,bj,k, I myCurrentTime,myThid) RETURN END