5 |
|
|
6 |
CStartOfInterface |
CStartOfInterface |
7 |
SUBROUTINE SEAICE_TRACER_PHYS( myTime, myIter, myThid ) |
SUBROUTINE SEAICE_TRACER_PHYS( myTime, myIter, myThid ) |
8 |
C /=======================================================\ |
C *=======================================================* |
9 |
C | SUBROUTINE seaice_tracer_phys | |
C | SUBROUTINE seaice_tracer_phys |
10 |
C | o Time step SItr/SItrEFF as a result of | |
C | o Time step SItr/SItrEFF as a result of |
11 |
C | seaice thermodynamics and specific tracer physics | |
C | seaice thermodynamics and specific tracer physics |
12 |
C \=======================================================/ |
C *=======================================================* |
13 |
IMPLICIT NONE |
IMPLICIT NONE |
14 |
|
|
15 |
C === Global variables === |
C === Global variables === |
21 |
#include "SEAICE.h" |
#include "SEAICE.h" |
22 |
#include "SEAICE_PARAMS.h" |
#include "SEAICE_PARAMS.h" |
23 |
#include "SEAICE_TRACER.h" |
#include "SEAICE_TRACER.h" |
24 |
|
#ifdef ALLOW_SALT_PLUME |
25 |
|
# include "SALT_PLUME.h" |
26 |
|
#endif |
27 |
|
|
28 |
C === Routine arguments === |
C === Routine arguments === |
29 |
C INPUT: |
C INPUT: |
40 |
|
|
41 |
INTEGER iTr, jTh, I, J, bi, bj, ks |
INTEGER iTr, jTh, I, J, bi, bj, ks |
42 |
_RL SItrFromOcean (1:sNx,1:sNy) |
_RL SItrFromOcean (1:sNx,1:sNy) |
43 |
_RL SItrFromSnow (1:sNx,1:sNy) |
_RL SItrFromFlood (1:sNx,1:sNy) |
44 |
_RL HEFFprev, HEFFpost, growFact, meltPart, tmpscal1 |
_RL HEFFprev, HEFFpost, growFact, meltPart, tmpscal1 |
45 |
|
_RL SItrExpand (1:sNx,1:sNy) |
46 |
|
_RL AREAprev, AREApost, expandFact |
47 |
|
CHARACTER*8 diagName |
48 |
|
|
49 |
#ifdef ALLOW_SITRACER_DIAG |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
50 |
_RL DIAGarray (1:sNx,1:sNy,Nr) |
_RL DIAGarray (1:sNx,1:sNy,Nr) |
51 |
#endif |
#endif |
52 |
|
|
58 |
|
|
59 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
60 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
61 |
DO iTr=1,SItrMaxNum |
DO iTr=1,SItrNumInUse |
62 |
|
|
63 |
c 0) set ice-ocean and ice-snow exchange values |
c 0) set ice-ocean and ice-snow exchange values |
64 |
c ============================================= |
c ============================================= |
65 |
DO J=1,sNy |
DO J=1,sNy |
66 |
DO I=1,sNx |
DO I=1,sNx |
67 |
SItrFromOcean(i,j)=0. _d 0 |
SItrFromOcean(i,j)=SItrFromOcean0(iTr) |
68 |
SItrFromSnow(i,j)=0. _d 0 |
SItrFromFlood(i,j)=SItrFromFlood0(iTr) |
69 |
|
SItrExpand(i,j)=SItrExpand0(iTr) |
70 |
ENDDO |
ENDDO |
71 |
ENDDO |
ENDDO |
72 |
if (SItrName(iTr).EQ.'age') then |
c salinity tracer: |
73 |
c age tracer: not passed from ocean or snow |
if ( (SItrName(iTr).EQ.'salinity').AND. |
74 |
|
& (SItrFromOceanFrac(iTr).GT.ZERO) ) then |
75 |
DO J=1,sNy |
DO J=1,sNy |
76 |
DO I=1,sNx |
DO I=1,sNx |
77 |
SItrFromOcean(i,j)=0. _d 0 |
SItrFromOcean(i,j)=SItrFromOceanFrac(iTr)*salt(I,j,ks,bi,bj) |
78 |
ENDDO |
SItrFromFlood(i,j)=SItrFromFloodFrac(iTr)*salt(I,j,ks,bi,bj) |
|
ENDDO |
|
|
elseif (SItrName(iTr).EQ.'salinity') then |
|
|
c salinity tracer: |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
SItrFromOcean(i,j)=SIsal0 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
|
|
if (SIsalFRAC.GT.0.) |
|
|
& SItrFromOcean(i,j)=SIsalFRAC*salt(I,j,ks,bi,bj) |
|
|
#endif |
|
|
ENDDO |
|
|
ENDDO |
|
|
elseif (SItrName(iTr).EQ.'one') then |
|
|
c "ice concentration" tracer that should remain .EQ.1. |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
SItrFromOcean(i,j)=1. _d 0 |
|
|
SItrFromSnow(i,j)=1. _d 0 |
|
79 |
ENDDO |
ENDDO |
80 |
ENDDO |
ENDDO |
81 |
endif |
endif |
82 |
c 1) seaice thermodynamics processes |
c 1) seaice thermodynamics processes |
83 |
c ================================== |
c ================================== |
84 |
|
if (SItrMate(iTr).EQ.'HEFF') then |
85 |
DO J=1,sNy |
DO J=1,sNy |
86 |
DO I=1,sNx |
DO I=1,sNx |
87 |
HEFFprev=SItrHEFF(i,j,bi,bj,1) |
HEFFprev=SItrHEFF(i,j,bi,bj,1) |
88 |
#ifdef ALLOW_SITRACER_DIAG |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
89 |
diagArray(I,J,5+(iTr-1)*5) = |
DIAGarray(I,J,5+(iTr-1)*5) = |
90 |
& HEFFprev*SItracer(i,j,bi,bj,iTr) + SItrBucket(i,j,bi,bj,iTr) |
& HEFFprev*SItracer(i,j,bi,bj,iTr) + SItrBucket(i,j,bi,bj,iTr) |
91 |
#endif |
#endif |
92 |
c apply the sequence of thermodynamics increments to actual traceur |
c apply the sequence of thermodynamics increments to actual traceur |
117 |
HEFFpost=SItrHEFF(i,j,bi,bj,5) |
HEFFpost=SItrHEFF(i,j,bi,bj,5) |
118 |
if (HEFFpost.GT.HEFFprev) growFact=HEFFprev/HEFFpost |
if (HEFFpost.GT.HEFFprev) growFact=HEFFprev/HEFFpost |
119 |
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)*growFact |
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)*growFact |
120 |
& +SItrFromSnow(i,j) *(1. _d 0 - growFact) |
& +SItrFromFlood(i,j) *(1. _d 0 - growFact) |
121 |
if ((SItrName(iTr).EQ.'age').OR.(SItrName(iTr).EQ.'one')) then |
c rk: flooding can only imply an ocean-ice tracer exchange, as long |
122 |
c Including this term in the bucket only makes sense for diagnostics purposes |
c as we dont have snow tracers, so it goes through SItrBucket. |
|
c and should not be done for tracers that are exchanged with the ocean (we would |
|
|
c need another bucket for ice-snow exchange, and snow tracers to start with). |
|
123 |
SItrBucket(i,j,bi,bj,iTr)=SItrBucket(i,j,bi,bj,iTr) |
SItrBucket(i,j,bi,bj,iTr)=SItrBucket(i,j,bi,bj,iTr) |
124 |
& -HEFFpost*SItrFromSnow(i,j)*(1. _d 0 - growFact) |
& -HEFFpost*SItrFromFlood(i,j)*(1. _d 0 - growFact) |
125 |
endif |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
126 |
#ifdef ALLOW_SITRACER_DIAG |
DIAGarray(I,J,5+(iTr-1)*5) = HEFFpost*SItracer(i,j,bi,bj,iTr) |
127 |
diagArray(I,J,5+(iTr-1)*5) = HEFFpost*SItracer(i,j,bi,bj,iTr) |
& +SItrBucket(i,j,bi,bj,iTr)-DIAGarray(I,J,5+(iTr-1)*5) |
|
& +SItrBucket(i,j,bi,bj,iTr)-diagArray(I,J,5+(iTr-1)*5) |
|
128 |
#endif |
#endif |
129 |
ENDDO |
ENDDO |
130 |
ENDDO |
ENDDO |
131 |
|
c TAF? if (SItrMate(iTr).EQ.'AREA') then |
132 |
|
else |
133 |
|
c 1) or seaice cover expansion |
134 |
|
c ============================ |
135 |
|
c this is much simpler than for ice volume/mass tracers, because |
136 |
|
c properties of the ice surface are not be conserved across the |
137 |
|
c ocean-ice system, the contraction/expansion terms are all |
138 |
|
c simultaneous (which is sane), and the only generic effect |
139 |
|
c is due to expansion (new cover). |
140 |
|
DO J=1,sNy |
141 |
|
DO I=1,sNx |
142 |
|
c apply expansion |
143 |
|
AREAprev=SItrAREA(i,j,bi,bj,2) |
144 |
|
AREApost=SItrAREA(i,j,bi,bj,3) |
145 |
|
c compute ratio in [0. 1.] range for expansion/contraction |
146 |
|
expandFact=1. _d 0 |
147 |
|
if (AREApost.GT.AREAprev) expandFact=AREAprev/AREApost |
148 |
|
c update SItr accordingly |
149 |
|
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)*expandFact |
150 |
|
& +SItrExpand(i,j)*(1. _d 0 - expandFact) |
151 |
|
ENDDO |
152 |
|
ENDDO |
153 |
|
endif |
154 |
c 2) very ice tracer processes |
c 2) very ice tracer processes |
155 |
c ============================ |
c ============================ |
156 |
if (SItrName(iTr).EQ.'age') then |
if (SItrName(iTr).EQ.'age') then |
157 |
c age tracer: grow old as time passes by |
c age tracer: grow old as time passes by |
158 |
DO J=1,sNy |
DO J=1,sNy |
159 |
DO I=1,sNx |
DO I=1,sNx |
160 |
if (SItrHEFF(i,j,bi,bj,5).GT.0. _d 0) then |
if (( (SItrHEFF(i,j,bi,bj,5).GT.0. _d 0).AND.(SItrMate(iTr) |
161 |
|
& .EQ.'HEFF') ).OR.( (SItrAREA(i,j,bi,bj,3).GT.0. _d 0).AND. |
162 |
|
& (SItrMate(iTr).EQ.'AREA') )) then |
163 |
SItracer(i,j,bi,bj,iTr)= |
SItracer(i,j,bi,bj,iTr)= |
164 |
& SItracer(i,j,bi,bj,iTr)+SEAICE_deltaTtherm |
& SItracer(i,j,bi,bj,iTr)+SEAICE_deltaTtherm |
165 |
else |
else |
171 |
c salinity tracer: no specific process |
c salinity tracer: no specific process |
172 |
elseif (SItrName(iTr).EQ.'one') then |
elseif (SItrName(iTr).EQ.'one') then |
173 |
c "ice concentration" tracer: no specific process |
c "ice concentration" tracer: no specific process |
174 |
|
elseif (SItrName(iTr).EQ.'ridge') then |
175 |
|
c simple, made up, ice surface roughness index prototype |
176 |
|
DO J=1,sNy |
177 |
|
DO I=1,sNx |
178 |
|
c ridging increases roughness |
179 |
|
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)+ |
180 |
|
& MAX(0. _d 0, SItrAREA(i,j,bi,bj,1)-SItrAREA(i,j,bi,bj,2)) |
181 |
|
c ice melt reduces ridges/roughness |
182 |
|
HEFFprev=SItrHEFF(i,j,bi,bj,1) |
183 |
|
HEFFpost=SItrHEFF(i,j,bi,bj,4) |
184 |
|
tmpscal1=1. _d 0 |
185 |
|
if (HEFFprev.GT.HEFFpost) tmpscal1=HEFFpost/HEFFprev |
186 |
|
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)*tmpscal1 |
187 |
|
ENDDO |
188 |
|
ENDDO |
189 |
endif |
endif |
190 |
c 3) ice-ocean tracer exchange |
c 3) ice-ocean tracer exchange/mapping to external variables |
191 |
c ============================= |
c ========================================================== |
192 |
if (SItrName(iTr).EQ.'age') then |
#ifdef ALLOW_DIAGNOSTICS |
193 |
c age tracer: not passed to ocean |
if (SItrMate(iTr).EQ.'HEFF') then |
194 |
elseif (SItrName(iTr).EQ.'salinity') then |
WRITE(diagName,'(A4,I2.2,A2)') 'SItr',iTr,'Fx' |
195 |
|
tmpscal1=-ONE/SEAICE_deltaTtherm*SEAICE_rhoIce |
196 |
|
CALL DIAGNOSTICS_SCALE_FILL(SItrBucket(1-OLx,1-OLy,bi,bj,iTr), |
197 |
|
& tmpscal1, 1, diagName,0,1,2,bi,bj,myThid) |
198 |
|
endif |
199 |
|
#endif |
200 |
|
|
201 |
|
if ( (SItrName(iTr).EQ.'salinity').AND. |
202 |
|
& (SEAICE_salinityTracer) ) then |
203 |
c salinity tracer: salt flux |
c salinity tracer: salt flux |
204 |
c DO J=1,sNy |
DO J=1,sNy |
205 |
c DO I=1,sNx |
DO I=1,sNx |
206 |
c saltFlux(I,J,bi,bj) = - SItrBucket(i,j,bi,bj,iTr) |
saltFlux(I,J,bi,bj) = - SItrBucket(i,j,bi,bj,iTr) |
207 |
c & *HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm*SEAICE_rhoIce |
& *HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm*SEAICE_rhoIce |
208 |
c note: at this point of the time step, that is the correct sign |
c note: at this point of the time step, that is the correct sign |
209 |
c saltPlumeFlux(I,J,bi,bj) = ... |
#ifdef ALLOW_SALT_PLUME |
210 |
c ENDDO |
c should work for both constant and variable ice salinity -- to be tested |
211 |
c ENDDO |
saltPlumeFlux(I,J,bi,bj) = MAX(ZERO,saltFlux(I,J,bi,bj)) |
212 |
elseif (SItrName(iTr).EQ.'one') then |
& *SPsalFRAC*(salt(I,j,ks,bi,bj)-SItrFromOcean(i,j)) |
213 |
c "ice concentration" tracer: not passed to ocean |
#endif |
214 |
|
ENDDO |
215 |
|
ENDDO |
216 |
endif |
endif |
217 |
|
|
218 |
DO J=1,sNy |
DO J=1,sNy |
219 |
DO I=1,sNx |
DO I=1,sNx |
220 |
#ifdef ALLOW_SITRACER_DIAG |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
221 |
diagArray(I,J,4+(iTr-1)*5) = - SItrBucket(i,j,bi,bj,iTr) |
DIAGarray(I,J,4+(iTr-1)*5) = - SItrBucket(i,j,bi,bj,iTr) |
222 |
& *HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm*SEAICE_rhoIce |
& *HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm*SEAICE_rhoIce |
223 |
#endif |
#endif |
224 |
c empty bucket |
c empty bucket |
225 |
SItrBucket(i,j,bi,bj,iTr)=0. _d 0 |
SItrBucket(i,j,bi,bj,iTr)=0. _d 0 |
226 |
ENDDO |
ENDDO |
227 |
ENDDO |
ENDDO |
228 |
|
|
229 |
|
c TAF? elseif (SItrMate(iTr).EQ.'AREA') then |
230 |
|
|
231 |
c 4) diagnostics |
c 4) diagnostics |
232 |
c ============== |
c ============== |
233 |
#ifdef ALLOW_SITRACER_DIAG |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
234 |
|
if (SItrMate(iTr).EQ.'HEFF') then |
235 |
DO J=1,sNy |
DO J=1,sNy |
236 |
DO I=1,sNx |
DO I=1,sNx |
237 |
HEFFpost=SItrHEFF(i,j,bi,bj,5) |
HEFFpost=SItrHEFF(i,j,bi,bj,5) |
238 |
DIAGarray(I,J,1+(iTr-1)*5) = SItracer(i,j,bi,bj,iTr) |
DIAGarray(I,J,1+(iTr-1)*5) = SItracer(i,j,bi,bj,iTr) |
239 |
DIAGarray(I,J,2+(iTr-1)*5) = SItracer(i,j,bi,bj,iTr)*HEFFpost |
DIAGarray(I,J,2+(iTr-1)*5) = SItracer(i,j,bi,bj,iTr)*HEFFpost |
240 |
c diagArray(:,:,3) is the term of comparison for diagArray(:,:,2) |
c DIAGarray(:,:,3) is the term of comparison for DIAGarray(:,:,2) |
241 |
if (SItrName(iTr).EQ.'age') then |
if (SItrName(iTr).EQ.'salinity') then |
|
DIAGarray(I,J,3+(iTr-1)*5) = IceAgeTr(i,j,bi,bj,2) |
|
|
elseif (SItrName(iTr).EQ.'salinity') then |
|
242 |
DIAGarray(I,J,3+(iTr-1)*5) = HSALT(i,j,bi,bj)/SEAICE_rhoIce |
DIAGarray(I,J,3+(iTr-1)*5) = HSALT(i,j,bi,bj)/SEAICE_rhoIce |
243 |
elseif (SItrName(iTr).EQ.'one') then |
elseif (SItrName(iTr).EQ.'one') then |
244 |
DIAGarray(I,J,3+(iTr-1)*5) = HEFFpost |
DIAGarray(I,J,3+(iTr-1)*5) = HEFFpost |
245 |
endif |
endif |
246 |
c diagArray(:,:,4) allows check of conservation : del(SItrBucket)+del(SItr*HEFF)=0. over do_phys |
c DIAGarray(:,:,4) allows check of conservation : del(SItrBucket)+del(SItr*HEFF)=0. over do_phys |
247 |
c diagArray(:,:,5) is the tracer flux from the ocean (<0 incr. ocean tracer) |
c DIAGarray(:,:,5) is the tracer flux from the ocean (<0 incr. ocean tracer) |
248 |
|
ENDDO |
249 |
|
ENDDO |
250 |
|
else |
251 |
|
DO J=1,sNy |
252 |
|
DO I=1,sNx |
253 |
|
AREApost=SItrAREA(i,j,bi,bj,3) |
254 |
|
DIAGarray(I,J,1+(iTr-1)*5) = SItracer(i,j,bi,bj,iTr) |
255 |
|
DIAGarray(I,J,2+(iTr-1)*5) = SItracer(i,j,bi,bj,iTr)*AREApost |
256 |
ENDDO |
ENDDO |
257 |
ENDDO |
ENDDO |
258 |
|
endif |
259 |
#endif |
#endif |
260 |
ENDDO |
ENDDO |
261 |
#ifdef ALLOW_SITRACER_DIAG |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
262 |
CALL DIAGNOSTICS_FILL(DIAGarray,'UDIAG1 ',0,Nr,3,bi,bj,myThid) |
c CALL DIAGNOSTICS_FILL(DIAGarray,'UDIAG1 ',0,Nr,3,bi,bj,myThid) |
263 |
#endif |
#endif |
264 |
ENDDO |
ENDDO |
265 |
ENDDO |
ENDDO |