/[MITgcm]/MITgcm/pkg/seaice/seaice_ocean_stress.F
ViewVC logotype

Contents of /MITgcm/pkg/seaice/seaice_ocean_stress.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (show annotations) (download)
Tue Apr 24 18:38:15 2007 UTC (17 years ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint59a
Changes since 1.15: +7 -6 lines
one day we will get it right: replace ALLOW_EVP with SEAICE_ALLOW_EVP

1 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_ocean_stress.F,v 1.15 2007/04/24 17:54:44 heimbach Exp $
2 C $Name: $
3
4 #include "SEAICE_OPTIONS.h"
5
6 CStartOfInterface
7 SUBROUTINE SEAICE_OCEAN_STRESS(
8 I myTime, myIter, myThid )
9 C /==========================================================\
10 C | SUBROUTINE SEAICE_OCEAN_STRESS |
11 C | o Calculate ocean surface stresses |
12 C | - C-grid version |
13 C |==========================================================|
14 C \==========================================================/
15 IMPLICIT NONE
16
17 C === Global variables ===
18 #include "SIZE.h"
19 #include "EEPARAMS.h"
20 #include "PARAMS.h"
21 #include "GRID.h"
22 #include "FFIELDS.h"
23 #include "SEAICE.h"
24 #include "SEAICE_PARAMS.h"
25
26 C === Routine arguments ===
27 C myTime - Simulation time
28 C myIter - Simulation timestep number
29 C myThid - Thread no. that called this routine.
30 _RL myTime
31 INTEGER myIter
32 INTEGER myThid
33 CEndOfInterface
34
35 #ifdef SEAICE_CGRID
36 C === Local variables ===
37 C i,j,bi,bj - Loop counters
38
39 INTEGER i, j, bi, bj
40 _RL SINWAT, COSWAT, SINWIN, COSWIN
41 _RL fuIceLoc, fvIceLoc, FX, FY
42 _RL areaW, areaS
43
44 _RL e11 (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
45 _RL e22 (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
46 _RL e12 (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
47 _RL press (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
48 _RL sig11 (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49 _RL sig22 (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50 _RL sig12 (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
51 _RL eplus, eminus
52
53 c introduce turning angle (default is zero)
54 SINWAT=SIN(SEAICE_waterTurnAngle*deg2rad)
55 COSWAT=COS(SEAICE_waterTurnAngle*deg2rad)
56 SINWIN=SIN(SEAICE_airTurnAngle*deg2rad)
57 COSWIN=COS(SEAICE_airTurnAngle*deg2rad)
58
59 C-- Update overlap regions
60 CALL EXCH_UV_XY_RL(WINDX, WINDY, .TRUE., myThid)
61
62 #ifndef SEAICE_EXTERNAL_FLUXES
63 C-- Interpolate wind stress (N/m^2) from C-points of C-grid
64 C to U and V points of C-grid for forcing the ocean model.
65 DO bj=myByLo(myThid),myByHi(myThid)
66 DO bi=myBxLo(myThid),myBxHi(myThid)
67 DO j=1,sNy
68 DO i=1,sNx
69 fu(I,J,bi,bj)=0.5*(WINDX(I,J,bi,bj) + WINDX(I-1,J,bi,bj))
70 fv(I,J,bi,bj)=0.5*(WINDY(I,J,bi,bj) + WINDY(I,J-1,bi,bj))
71 ENDDO
72 ENDDO
73 ENDDO
74 ENDDO
75 #endif /* ifndef SEAICE_EXTERNAL_FLUXES */
76
77 IF ( useHB87StressCoupling ) THEN
78 C
79 C use an intergral over ice and ocean surface layer to define
80 C surface stresses on ocean following Hibler and Bryan (1987, JPO)
81 C
82 C recompute strain rates, viscosities, etc. from updated ice velocities
83 IF ( .NOT. SEAICEuseEVP ) THEN
84 C only for EVP we already have the stress components otherwise we need
85 C to recompute them here
86 CALL SEAICE_CALC_STRAINRATES(
87 I uIce(1-Olx,1-Oly,1,1,1), vIce(1-Olx,1-Oly,1,1,1),
88 O e11, e22, e12,
89 I myThid )
90
91 CALL SEAICE_CALC_VISCOSITIES(
92 I e11, e22, e12, zMin, zMax, hEffM, press0,
93 O eta, zeta, press,
94 I myThid )
95 ENDIF
96 C re-compute internal stresses with updated ice velocities
97 DO bj=myByLo(myThid),myByHi(myThid)
98 DO bi=myBxLo(myThid),myBxHi(myThid)
99 IF ( .NOT. SEAICEuseEVP ) THEN
100 C only for EVP we already have computed the stress divergences, for
101 C anything else we have to do it here
102 DO j=1-Oly,sNy+Oly
103 DO i=1-Olx,sNx+Olx
104 sig11(I,J) = 0. _d 0
105 sig22(I,J) = 0. _d 0
106 sig12(I,J) = 0. _d 0
107 ENDDO
108 ENDDO
109
110 DO j=1-Oly+1,sNy+Oly-1
111 DO i=1-Olx+1,sNx+Olx-1
112 eplus = e11(I,J,bi,bj) + e22(I,J,bi,bj)
113 eminus= e11(I,J,bi,bj) - e22(I,J,bi,bj)
114 sig11(I,J) = zeta(I,J,bi,bj)*eplus + eta(I,J,bi,bj)*eminus
115 & - 0.5 _d 0 * PRESS(I,J,bi,bj)
116 sig22(I,J) = zeta(I,J,bi,bj)*eplus - eta(I,J,bi,bj)*eminus
117 & - 0.5 _d 0 * PRESS(I,J,bi,bj)
118 sig12(I,J) = 2. _d 0 * e12(I,J,bi,bj) *
119 & ( eta(I,J ,bi,bj) + eta(I-1,J ,bi,bj)
120 & + eta(I,J-1,bi,bj) + eta(I-1,J-1,bi,bj) )
121 & /MAX(1. _d 0,
122 & hEffM(I,J ,bi,bj) + hEffM(I-1,J ,bi,bj)
123 & + hEffM(I,J-1,bi,bj) + hEffM(I-1,J-1,bi,bj))
124 ENDDO
125 ENDDO
126 C evaluate divergence of stress and apply to forcing
127 DO J=1,sNy
128 DO I=1,sNx
129 FX = ( sig11(I ,J ) * _dyF(I ,J ,bi,bj)
130 & - sig11(I-1,J ) * _dyF(I-1,J ,bi,bj)
131 & + sig12(I ,J+1) * _dxV(I ,J+1,bi,bj)
132 & - sig12(I ,J ) * _dxV(I ,J ,bi,bj)
133 & ) * recip_rAw(I,J,bi,bj)
134 & -
135 & ( sig12(I,J) + sig12(I,J+1) )
136 & * _tanPhiAtU(I,J,bi,bj) * recip_rSphere
137 & +
138 & ( sig22(I,J) + sig22(I-1,J) ) * 0.5 _d 0
139 & * _tanPhiAtU(I,J,bi,bj) * recip_rSphere
140 C one metric term missing for general curvilinear coordinates
141 FY = ( sig22(I ,J ) * _dxF(I ,J ,bi,bj)
142 & - sig22(I ,J-1) * _dxF(I ,J-1,bi,bj)
143 & + sig12(I+1,J ) * _dyU(I+1,J ,bi,bj)
144 & - sig12(I ,J ) * _dyU(I ,J ,bi,bj)
145 & ) * recip_rAs(I,J,bi,bj)
146 & -
147 & ( sig22(I,J) + sig22(I,J-1) ) * 0.5 _d 0
148 & * _tanPhiAtV(I,J,bi,bj) * recip_rSphere
149 C two metric terms missing for general curvilinear coordinates
150 C average wind stress over ice and ocean and apply averaged wind
151 C stress and internal ice stresses to surface layer of ocean
152 areaW = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
153 & * SEAICEstressFactor
154 areaS = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
155 & * SEAICEstressFactor
156 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)
157 & + areaW*taux(I,J,bi,bj)
158 & + FX * SEAICEstressFactor
159 fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)
160 & + areaS*tauy(I,J,bi,bj)
161 & + FY * SEAICEstressFactor
162 C save stress divergence for later
163 #ifdef SEAICE_ALLOW_EVP
164 stressDivergenceX(I,J,bi,bj) = FX
165 stressDivergenceY(I,J,bi,bj) = FY
166 #endif /* SEAICE_ALLOW_EVP */
167 ENDDO
168 ENDDO
169 ELSE
170 #ifdef SEAICE_ALLOW_EVP
171 DO J=1,sNy
172 DO I=1,sNx
173 C average wind stress over ice and ocean and apply averaged wind
174 C stress and internal ice stresses to surface layer of ocean
175 areaW = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
176 & * SEAICEstressFactor
177 areaS = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
178 & * SEAICEstressFactor
179 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)
180 & + areaW*taux(I,J,bi,bj)
181 & + stressDivergenceX(I,J,bi,bj) * SEAICEstressFactor
182 fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)
183 & + areaS*tauy(I,J,bi,bj)
184 & + stressDivergenceY(I,J,bi,bj) * SEAICEstressFactor
185 ENDDO
186 ENDDO
187 #endif /* SEAICE_ALLOW_EVP */
188 ENDIF
189 ENDDO
190 ENDDO
191 ELSE
192
193 C-- Compute ice-affected wind stress (interpolate to U/V-points)
194 C by averaging wind stress and ice-ocean stress according to
195 C ice cover
196 DO bj=myByLo(myThid),myByHi(myThid)
197 DO bi=myBxLo(myThid),myBxHi(myThid)
198 DO j=1,sNy
199 DO i=1,sNx
200 fuIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I,J+1,bi,bj) )*
201 & COSWAT *
202 & ( UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj) )
203 & - SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
204 & ( DWATN(I ,J,bi,bj) *
205 & 0.5 _d 0*(vIce(I ,J ,1,bi,bj)-GWATY(I ,J ,bi,bj)
206 & +vIce(I ,J+1,1,bi,bj)-GWATY(I ,J+1,bi,bj))
207 & + DWATN(I-1,J,bi,bj) *
208 & 0.5 _d 0*(vIce(I-1,J ,1,bi,bj)-GWATY(I-1,J ,bi,bj)
209 & +vIce(I-1,J+1,1,bi,bj)-GWATY(I-1,J+1,bi,bj))
210 & )
211 fvIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I+1,J,bi,bj) )*
212 & COSWAT *
213 & ( VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj) )
214 & + SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
215 & ( DWATN(I,J ,bi,bj) *
216 & 0.5 _d 0*(uIce(I ,J ,1,bi,bj)-GWATX(I ,J ,bi,bj)
217 & +uIce(I+1,J ,1,bi,bj)-GWATX(I+1,J ,bi,bj))
218 & + DWATN(I,J-1,bi,bj) *
219 & 0.5 _d 0*(uIce(I ,J-1,1,bi,bj)-GWATX(I ,J-1,bi,bj)
220 & +uIce(I+1,J-1,1,bi,bj)-GWATX(I+1,J-1,bi,bj))
221 & )
222 areaW = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
223 & * SEAICEstressFactor
224 areaS = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
225 & * SEAICEstressFactor
226 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIceLoc
227 fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIceLoc
228 ENDDO
229 ENDDO
230 ENDDO
231 ENDDO
232 ENDIF
233 CALL EXCH_UV_XY_RS(fu, fv, .TRUE., myThid)
234
235 #endif /* not SEAICE_CGRID */
236
237 RETURN
238 END

  ViewVC Help
Powered by ViewVC 1.1.22