/[MITgcm]/MITgcm/pkg/seaice/seaice_ocean_stress.F
ViewVC logotype

Contents of /MITgcm/pkg/seaice/seaice_ocean_stress.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (show annotations) (download)
Wed Apr 18 18:06:52 2007 UTC (17 years, 1 month ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint59
Changes since 1.11: +1 -2 lines
remove '#include SEAICE_FFIELDS.h'

1 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_ocean_stress.F,v 1.11 2007/04/17 16:13:53 mlosch Exp $
2 C $Name: $
3
4 #include "SEAICE_OPTIONS.h"
5
6 CStartOfInterface
7 SUBROUTINE SEAICE_OCEAN_STRESS(
8 I myTime, myIter, myThid )
9 C /==========================================================\
10 C | SUBROUTINE SEAICE_OCEAN_STRESS |
11 C | o Calculate ocean surface stresses |
12 C | - C-grid version |
13 C |==========================================================|
14 C \==========================================================/
15 IMPLICIT NONE
16
17 C === Global variables ===
18 #include "SIZE.h"
19 #include "EEPARAMS.h"
20 #include "PARAMS.h"
21 #include "GRID.h"
22 #include "FFIELDS.h"
23 #include "SEAICE.h"
24 #include "SEAICE_PARAMS.h"
25
26 C === Routine arguments ===
27 C myTime - Simulation time
28 C myIter - Simulation timestep number
29 C myThid - Thread no. that called this routine.
30 _RL myTime
31 INTEGER myIter
32 INTEGER myThid
33 CEndOfInterface
34
35 #ifdef SEAICE_CGRID
36 C === Local variables ===
37 C i,j,bi,bj - Loop counters
38
39 INTEGER i, j, bi, bj
40 _RL SINWAT, COSWAT, SINWIN, COSWIN
41 _RL fuIceLoc, fvIceLoc, FX, FY
42 _RL areaW, areaS
43
44 _RL press (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
45 _RL etaPlusZeta (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
46 _RL zetaMinusEta(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
47 _RL etaMeanZ (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
48 _RL etaMeanU (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49 _RL etaMeanV (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50 _RL dVdx (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
51 _RL dVdy (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
52 _RL dUdx (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
53 _RL dUdy (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
54
55 c introduce turning angle (default is zero)
56 SINWAT=SIN(SEAICE_waterTurnAngle*deg2rad)
57 COSWAT=COS(SEAICE_waterTurnAngle*deg2rad)
58 SINWIN=SIN(SEAICE_airTurnAngle*deg2rad)
59 COSWIN=COS(SEAICE_airTurnAngle*deg2rad)
60
61 C-- Update overlap regions
62 CALL EXCH_UV_XY_RL(WINDX, WINDY, .TRUE., myThid)
63
64 #ifndef SEAICE_EXTERNAL_FLUXES
65 C-- Interpolate wind stress (N/m^2) from C-points of C-grid
66 C to U and V points of C-grid for forcing the ocean model.
67 DO bj=myByLo(myThid),myByHi(myThid)
68 DO bi=myBxLo(myThid),myBxHi(myThid)
69 DO j=1,sNy
70 DO i=1,sNx
71 fu(I,J,bi,bj)=0.5*(WINDX(I,J,bi,bj) + WINDX(I-1,J,bi,bj))
72 fv(I,J,bi,bj)=0.5*(WINDY(I,J,bi,bj) + WINDY(I,J-1,bi,bj))
73 ENDDO
74 ENDDO
75 ENDDO
76 ENDDO
77 #endif /* ifndef SEAICE_EXTERNAL_FLUXES */
78
79 IF ( useHB87StressCoupling ) THEN
80 C
81 C use an intergral over ice and ocean surface layer to define
82 C surface stresses on ocean following Hibler and Bryan (1987, JPO)
83 C
84 C recompute viscosities from updated ice velocities
85 CALL SEAICE_CALC_VISCOSITIES(
86 I uIce(1-Olx,1-Oly,1,1,1), vIce(1-Olx,1-Oly,1,1,1),
87 I zMin, zMax, hEffM, press0,
88 O eta, zeta, press,
89 #ifdef SEAICE_ALLOW_EVP
90 O seaice_div, seaice_tension, seaice_shear,
91 #endif /* SEAICE_ALLOW_EVP */
92 I myThid )
93 C re-compute internal stresses with updated ice velocities
94 DO bj=myByLo(myThid),myByHi(myThid)
95 DO bi=myBxLo(myThid),myBxHi(myThid)
96 DO j=1-Oly+1,sNy+Oly-1
97 DO i=1-Olx+1,sNx+Olx-1
98 etaPlusZeta (I,J) = eta(I,J,bi,bj) + zeta(I,J,bi,bj)
99 zetaMinusEta(I,J) = zeta(I,J,bi,bj) - eta(I,J,bi,bj)
100 etaMeanU (I,J) =
101 & HALF*(ETA (I,J,bi,bj) + ETA (I-1,J ,bi,bj))
102 etaMeanV (I,J) =
103 & HALF*(ETA (I,J,bi,bj) + ETA (I ,J-1,bi,bj))
104 etaMeanZ (I,J) = QUART *
105 & ( eta(I ,J,bi,bj) + eta(I ,J-1,bi,bj)
106 & + eta(I-1,J,bi,bj) + eta(I-1,J-1,bi,bj) )
107 dUdx(I,J) = ( uIce(I+1,J,1,bi,bj) - uIce(I,J,1,bi,bj) )
108 & * _recip_dxF(I,J,bi,bj)
109 dUdy(I,J) = ( uIce(I,J+1,1,bi,bj) - uIce(I,J,1,bi,bj) )
110 & * _recip_dyU(I,J+1,bi,bj)
111 dVdx(I,J) = ( vIce(I+1,J,1,bi,bj) - vIce(I,J,1,bi,bj) )
112 & * _recip_dxV(I+1,J,bi,bj)
113 dVdy(I,J) = ( vIce(I,J+1,1,bi,bj) - vIce(I,J,1,bi,bj) )
114 & * _recip_dyF(I,J,bi,bj)
115 ENDDO
116 ENDDO
117 DO J = 1,sNy
118 DO I = 1,sNx
119 C First FX = (d/dx)*sigma
120 C + d/dx[ eta+zeta d/dx ] U
121 FX = _recip_dxC(I,J,bi,bj) *
122 & ( etaPlusZeta(I ,J) * dUdx(I ,J)
123 & - etaPlusZeta(I-1,J) * dUdx(I-1,J) )
124 C + (d/dy)[eta*(d/dy + tanphi/a)] U (also on UVRT1/2)
125 FX = FX + _recip_dyG(I,J,bi,bj) * (
126 & ( etaMeanZ(I,J+1) * dUdy(I,J+1)
127 & - etaMeanZ(I,J ) * dUdy(I,J )
128 & )
129 & - ( etaMeanZ(I,J+1)
130 & * ( uIce(I,J+1,1,bi,bj)+uIce(I,J,1,bi,bj) )
131 & - etaMeanZ(I,J )
132 & * ( uIce(I,J-1,1,bi,bj)+uIce(I,J,1,bi,bj) ) )
133 & * 0.5 _d 0 * _tanPhiAtU(I,J,bi,bj)
134 & * recip_rSphere )
135 C - 2*eta*(tanphi/a) * ( tanphi/a ) U
136 FX = FX - TWO * uIce(I,J,1,bi,bj)
137 & * etaMeanU(I,J)*recip_rSphere*recip_rSphere
138 & * _tanPhiAtU(I,J,bi,bj) * _tanPhiAtU(I,J,bi,bj)
139 C + d/dx[ (zeta-eta) dV/dy]
140 FX = FX +
141 & ( zetaMinusEta(I ,J ) * dVdy(I ,J )
142 & - zetaMinusEta(I-1,J ) * dVdy(I-1,J )
143 & ) * _recip_dxC(I,J,bi,bj)
144 C + d/dy[ eta dV/x ]
145 FX = FX + (
146 & etaMeanZ(I,J+1)
147 & * ( vIce(I ,J+1,1,bi,bj) - vIce(I-1,J+1,1,bi,bj) )
148 & * _recip_dxV(I,J+1,bi,bj)
149 & - etaMeanZ(I,J )
150 & * ( vIce(I ,J,1,bi,bj) - vIce(I-1,J,1,bi,bj) )
151 & * _recip_dxV(I,J,bi,bj)
152 & ) * _recip_dyG(I,J,bi,bj)
153 C - d/dx[ (eta+zeta) * v * (tanphi/a) ]
154 FX = FX - (
155 & etaPlusZeta(I ,J)
156 & * 0.5 * (vIce(I ,J,1,bi,bj)+vIce(I ,J+1,1,bi,bj))
157 & * 0.5 * ( _tanPhiAtU(I ,J,bi,bj)
158 & + _tanPhiAtU(I+1,J,bi,bj) )
159 & - etaPlusZeta(I-1,J) *
160 & * 0.5 * (vIce(I-1,J,1,bi,bj)+vIce(I-1,J+1,1,bi,bj))
161 & * 0.5 * ( _tanPhiAtU(I-1,J,bi,bj)
162 & + _tanPhiAtU(I ,J,bi,bj) )
163 & )* _recip_dxC(I,J,bi,bj)*recip_rSphere
164 C - 2*eta*(tanphi/a) * dV/dx
165 FX = FX
166 & -TWO * etaMeanU(I,J) * _tanPhiAtV(I,J,bi,bj)
167 & *recip_rSphere
168 & *(vIce(I ,J,1,bi,bj) + vIce(I ,J+1,1,bi,bj)
169 & - vIce(I-1,J,1,bi,bj) - vIce(I-1,J+1,1,bi,bj))
170 & * _recip_dxC(I,J,bi,bj)
171 C - (d/dx) P/2
172 FX = _maskW(I,J,1,bi,bj) * ( FX - _recip_dxC(I,J,bi,bj)
173 & * ( press(I,J,bi,bj) - press(I-1,J,bi,bj) ) )
174 C
175 C then FY = (d/dy)*sigma
176 C + d/dy [(eta+zeta) d/dy] V
177 FY = _recip_dyC(I,J,bi,bj) *
178 & ( dVdy(I,J ) * etaPlusZeta(I,J )
179 & - dVdy(I,J-1) * etaPlusZeta(I,J-1) )
180 C + d/dx [eta d/dx] V
181 FY = FY + _recip_dxC(I,J,bi,bj) *
182 & ( eta(I ,J,bi,bj) * dVdx(I ,J)
183 & - eta(I-1,J,bi,bj) * dVdx(I-1,J) )
184 C - d/dy [(zeta-eta) tanphi/a] V
185 FY = FY - _recip_dyC(I,J,bi,bj) * recip_rSphere * (
186 & zetaMinusEta(I,J ) * tanPhiAtU(I,J ,bi,bj)
187 & * 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J+1,1,bi,bj))
188 & - zetaMinusEta(I,J-1) * tanPhiAtU(I,J-1,bi,bj)
189 & * 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J-1,1,bi,bj)) )
190 C 2*eta tanphi/a ( - tanphi/a - d/dy) V
191 FY = FY - TWO*etaMeanV(I,J) * recip_rSphere
192 & * _tanPhiAtV(I,J,bi,bj) * (
193 & _tanPhiAtV(I,J,bi,bj) * recip_rSphere
194 & + _recip_dyC(I,J,bi,bj) *
195 & ( 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J+1,1,bi,bj))
196 & - 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J-1,1,bi,bj)) ) )
197 C + d/dy[ (zeta-eta) dU/dx ]
198 FY = FY +
199 & ( zetaMinusEta(I,J )*dUdx(I,J )
200 & - zetaMinusEta(I,J-1)*dUdx(I,J-1) )
201 & * _recip_dyC(I,J,bi,bj)
202 C + d/dx[ eta dU/dy ]
203 FY = FY + _recip_dxG(I,J,bi,bj) *
204 & ( etaMeanZ(I+1,J) * dUdy(I+1,J)
205 & - etaMeanZ(I ,J) * dUdy(I ,J) )
206 C + d/dx[ eta * (tanphi/a) * U ]
207 FY = FY + (
208 & etaMeanZ(I+1,J) * 0.5 *
209 & ( uIce(I+1,J ,1,bi,bj) * _tanPhiAtU(I+1,J ,bi,bj)
210 & + uIce(I+1,J-1,1,bi,bj) * _tanPhiAtU(I+1,J-1,bi,bj) )
211 & - etaMeanZ(I ,J) * 0.5 *
212 & ( uIce(I ,J ,1,bi,bj) * _tanPhiAtU(I ,J ,bi,bj)
213 & + uIce(I ,J-1,1,bi,bj) * _tanPhiAtU(I ,J ,bi,bj) )
214 & ) * _recip_dxG(I,J,bi,bj)*recip_rSphere
215 C + 2*eta*(tanphi/a) dU/dx
216 FY = FY +
217 & TWO * etaMeanV(I,J)*TWO * _tanPhiAtV(I,J,bi,bj)
218 & * ( uIce(I+1,J,1,bi,bj)+uIce(I+1,J-1,1,bi,bj)
219 & - uIce(I ,J,1,bi,bj)-uIce(I ,J-1,1,bi,bj) )
220 & * _recip_dxG(I,J,bi,bj) * recip_rSphere
221 C - (d/dy) P/2
222 FY = _maskS(I,J,1,bi,bj) * ( FY - _recip_dyC(I,J,bi,bj)
223 & * ( press(I,J,bi,bj) - press(I,J-1,bi,bj) ) )
224 C average wind stress over ice and ocean and apply averaged wind
225 C stress and internal ice stresses to surface layer of ocean
226 areaW = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
227 & * SEAICEstressFactor
228 areaS = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
229 & * SEAICEstressFactor
230 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)
231 & + areaW*taux(I,J,bi,bj)
232 & + FX * SEAICEstressFactor
233 fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)
234 & + areaS*tauy(I,J,bi,bj)
235 & + FY * SEAICEstressFactor
236 END DO
237 END DO
238 ENDDO
239 ENDDO
240 ELSE
241
242 C-- Compute ice-affected wind stress (interpolate to U/V-points)
243 C by averaging wind stress and ice-ocean stress according to
244 C ice cover
245 DO bj=myByLo(myThid),myByHi(myThid)
246 DO bi=myBxLo(myThid),myBxHi(myThid)
247 DO j=1,sNy
248 DO i=1,sNx
249 fuIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I,J+1,bi,bj) )*
250 & COSWAT *
251 & ( UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj) )
252 & - SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
253 & ( DWATN(I ,J,bi,bj) *
254 & 0.5 _d 0*(vIce(I ,J ,1,bi,bj)-GWATY(I ,J ,bi,bj)
255 & +vIce(I ,J+1,1,bi,bj)-GWATY(I ,J+1,bi,bj))
256 & + DWATN(I-1,J,bi,bj) *
257 & 0.5 _d 0*(vIce(I-1,J ,1,bi,bj)-GWATY(I-1,J ,bi,bj)
258 & +vIce(I-1,J+1,1,bi,bj)-GWATY(I-1,J+1,bi,bj))
259 & )
260 fvIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I+1,J,bi,bj) )*
261 & COSWAT *
262 & ( VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj) )
263 & + SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
264 & ( DWATN(I,J ,bi,bj) *
265 & 0.5 _d 0*(uIce(I ,J ,1,bi,bj)-GWATX(I ,J ,bi,bj)
266 & +uIce(I+1,J ,1,bi,bj)-GWATX(I+1,J ,bi,bj))
267 & + DWATN(I,J-1,bi,bj) *
268 & 0.5 _d 0*(uIce(I ,J-1,1,bi,bj)-GWATX(I ,J-1,bi,bj)
269 & +uIce(I+1,J-1,1,bi,bj)-GWATX(I+1,J-1,bi,bj))
270 & )
271 areaW = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
272 & * SEAICEstressFactor
273 areaS = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
274 & * SEAICEstressFactor
275 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIceLoc
276 fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIceLoc
277 ENDDO
278 ENDDO
279 ENDDO
280 ENDDO
281 ENDIF
282 CALL EXCH_UV_XY_RS(fu, fv, .TRUE., myThid)
283
284 #endif /* not SEAICE_CGRID */
285
286 RETURN
287 END

  ViewVC Help
Powered by ViewVC 1.1.22