/[MITgcm]/MITgcm/pkg/seaice/seaice_ocean_stress.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_ocean_stress.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download)
Fri Mar 17 15:53:38 2006 UTC (18 years, 2 months ago) by mlosch
Branch: MAIN
Changes since 1.6: +5 -5 lines
- fix factor 0.5 for pressure term in seaice_lsr
- small fix for ice-ocean stress (Hibler and Bryan)

1 mlosch 1.7 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_ocean_stress.F,v 1.6 2006/03/16 14:25:40 mlosch Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5    
6     CStartOfInterface
7     SUBROUTINE SEAICE_OCEAN_STRESS(
8     I myTime, myIter, myThid )
9     C /==========================================================\
10     C | SUBROUTINE SEAICE_OCEAN_STRESS |
11     C | o Calculate ocean surface stresses |
12     C | - C-grid version |
13     C |==========================================================|
14     C \==========================================================/
15     IMPLICIT NONE
16    
17     C === Global variables ===
18     #include "SIZE.h"
19     #include "EEPARAMS.h"
20     #include "PARAMS.h"
21 mlosch 1.5 #include "GRID.h"
22 mlosch 1.1 #include "FFIELDS.h"
23     #include "SEAICE.h"
24     #include "SEAICE_PARAMS.h"
25 mlosch 1.5 #include "SEAICE_FFIELDS.h"
26 mlosch 1.1
27     C === Routine arguments ===
28     C myTime - Simulation time
29     C myIter - Simulation timestep number
30     C myThid - Thread no. that called this routine.
31     _RL myTime
32     INTEGER myIter
33     INTEGER myThid
34     CEndOfInterface
35    
36     #ifdef SEAICE_CGRID
37     C === Local variables ===
38     C i,j,bi,bj - Loop counters
39    
40     INTEGER i, j, bi, bj
41 mlosch 1.5 _RL SINWAT, COSWAT, SINWIN, COSWIN
42     _RL fuIce, fvIce, FX, FY
43 mlosch 1.4 _RL areaW, areaS
44 mlosch 1.1
45 mlosch 1.5 _RL press (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
46     _RL etaPlusZeta (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
47     _RL zetaMinusEta(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
48     _RL etaMeanZ (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49     _RL etaMeanU (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50     _RL etaMeanV (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
51     _RL dVdx (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
52     _RL dVdy (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
53     _RL dUdx (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
54     _RL dUdy (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
55    
56 mlosch 1.1 c introduce turning angle (default is zero)
57     SINWAT=SIN(SEAICE_waterTurnAngle*deg2rad)
58     COSWAT=COS(SEAICE_waterTurnAngle*deg2rad)
59 mlosch 1.5 SINWIN=SIN(SEAICE_airTurnAngle*deg2rad)
60     COSWIN=COS(SEAICE_airTurnAngle*deg2rad)
61 mlosch 1.1
62     C-- Update overlap regions
63     CALL EXCH_UV_XY_RL(WINDX, WINDY, .TRUE., myThid)
64    
65     #ifndef SEAICE_EXTERNAL_FLUXES
66 mlosch 1.3 C-- Interpolate wind stress (N/m^2) from C-points of C-grid
67     C to U and V points of C-grid for forcing the ocean model.
68 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
69     DO bi=myBxLo(myThid),myBxHi(myThid)
70     DO j=1,sNy
71     DO i=1,sNx
72 mlosch 1.3 fu(I,J,bi,bj)=0.5*(WINDX(I,J,bi,bj) + WINDX(I-1,J,bi,bj))
73     fv(I,J,bi,bj)=0.5*(WINDY(I,J,bi,bj) + WINDY(I,J-1,bi,bj))
74 mlosch 1.1 ENDDO
75     ENDDO
76     ENDDO
77     ENDDO
78     #endif /* ifndef SEAICE_EXTERNAL_FLUXES */
79    
80 mlosch 1.5 IF ( useHB87StressCoupling ) THEN
81     C
82     C use an intergral over ice and ocean surface layer to define
83     C surface stresses on ocean following Hibler and Bryan (1987, JPO)
84     C
85     C recompute viscosities from updated ice velocities
86     CALL SEAICE_CALC_VISCOSITIES(
87     I uIce(1-Olx,1-Oly,1,1,1), vIce(1-Olx,1-Oly,1,1,1),
88     I zMin, zMax, hEffM, press0,
89     O eta, zeta, press,
90     I myThid )
91     C re-compute internal stresses with updated ice velocities
92     DO bj=myByLo(myThid),myByHi(myThid)
93     DO bi=myBxLo(myThid),myBxHi(myThid)
94     DO j=1-Oly+1,sNy+Oly-1
95     DO i=1-Olx+1,sNx+Olx-1
96     etaPlusZeta (I,J) = eta(I,J,bi,bj) + zeta(I,J,bi,bj)
97     zetaMinusEta(I,J) = zeta(I,J,bi,bj) - eta(I,J,bi,bj)
98     etaMeanU (I,J) =
99     & HALF*(ETA (I,J,bi,bj) + ETA (I-1,J ,bi,bj))
100     etaMeanV (I,J) =
101     & HALF*(ETA (I,J,bi,bj) + ETA (I ,J-1,bi,bj))
102     etaMeanZ (I,J) = QUART *
103     & ( eta(I ,J,bi,bj) + eta(I ,J-1,bi,bj)
104     & + eta(I-1,J,bi,bj) + eta(I-1,J-1,bi,bj) )
105     dUdx(I,J) = ( uIce(I+1,J,1,bi,bj) - uIce(I,J,1,bi,bj) )
106     & * _recip_dxF(I,J,bi,bj)
107     dUdy(I,J) = ( uIce(I,J+1,1,bi,bj) - uIce(I,J,1,bi,bj) )
108     & * _recip_dyU(I,J+1,bi,bj)
109     dVdx(I,J) = ( vIce(I+1,J,1,bi,bj) - vIce(I,J,1,bi,bj) )
110     & * _recip_dxV(I+1,J,bi,bj)
111     dVdy(I,J) = ( vIce(I,J+1,1,bi,bj) - vIce(I,J,1,bi,bj) )
112     & * _recip_dyF(I,J,bi,bj)
113     ENDDO
114     ENDDO
115     DO J = 1,sNy
116     DO I = 1,sNx
117 mlosch 1.7 C First FX = (d/dx)*sigma
118 mlosch 1.5 C + d/dx[ eta+zeta d/dx ] U
119     FX = _recip_dxC(I,J,bi,bj) *
120     & ( etaPlusZeta(I ,J) * dUdx(I ,J)
121     & - etaPlusZeta(I-1,J) * dUdx(I-1,J) )
122     C + (d/dy)[eta*(d/dy + tanphi/a)] U (also on UVRT1/2)
123     FX = FX + _recip_dyG(I,J,bi,bj) * (
124     & ( etaMeanZ(I,J+1) * dUdy(I,J+1)
125     & - etaMeanZ(I,J ) * dUdy(I,J )
126     & )
127     & - ( etaMeanZ(I,J+1)
128     & * ( uIce(I,J+1,1,bi,bj)+uIce(I,J,1,bi,bj) )
129     & - etaMeanZ(I,J )
130     & * ( uIce(I,J-1,1,bi,bj)+uIce(I,J,1,bi,bj) ) )
131     & * 0.5 _d 0 * _tanPhiAtU(I,J,bi,bj)
132     & * recip_rSphere )
133     C - 2*eta*(tanphi/a) * ( tanphi/a ) U
134     FX = FX - TWO * uIce(I,J,1,bi,bj)
135     & * etaMeanU(I,J)*recip_rSphere*recip_rSphere
136     & * _tanPhiAtU(I,J,bi,bj) * _tanPhiAtU(I,J,bi,bj)
137     C + d/dx[ (zeta-eta) dV/dy]
138     FX = FX +
139     & ( zetaMinusEta(I ,J ) * dVdy(I ,J )
140     & - zetaMinusEta(I-1,J ) * dVdy(I-1,J )
141     & ) * _recip_dxC(I,J,bi,bj)
142     C + d/dy[ eta dV/x ]
143     FX = FX + (
144     & etaMeanZ(I,J+1)
145     & * ( vIce(I ,J+1,1,bi,bj) - vIce(I-1,J+1,1,bi,bj) )
146     & * _recip_dxV(I,J+1,bi,bj)
147     & - etaMeanZ(I,J )
148     & * ( vIce(I ,J,1,bi,bj) - vIce(I-1,J,1,bi,bj) )
149     & * _recip_dxV(I,J,bi,bj)
150     & ) * _recip_dyG(I,J,bi,bj)
151     C - d/dx[ (eta+zeta) * v * (tanphi/a) ]
152     FX = FX - (
153     & etaPlusZeta(I ,J)
154     & * 0.5 * (vIce(I ,J,1,bi,bj)+vIce(I ,J+1,1,bi,bj))
155     & * 0.5 * ( _tanPhiAtU(I ,J,bi,bj)
156     & + _tanPhiAtU(I+1,J,bi,bj) )
157     & - etaPlusZeta(I-1,J) *
158     & * 0.5 * (vIce(I-1,J,1,bi,bj)+vIce(I-1,J+1,1,bi,bj))
159     & * 0.5 * ( _tanPhiAtU(I-1,J,bi,bj)
160     & + _tanPhiAtU(I ,J,bi,bj) )
161     & )* _recip_dxC(I,J,bi,bj)*recip_rSphere
162     C - 2*eta*(tanphi/a) * dV/dx
163     FX = FX
164     & -TWO * etaMeanU(I,J) * _tanPhiAtV(I,J,bi,bj)
165     & *recip_rSphere
166     & *(vIce(I ,J,1,bi,bj) + vIce(I ,J+1,1,bi,bj)
167     & - vIce(I-1,J,1,bi,bj) - vIce(I-1,J+1,1,bi,bj))
168     & * _recip_dxC(I,J,bi,bj)
169     C - (d/dx) P/2
170     FX = _maskW(I,J,1,bi,bj) * ( FX - _recip_dxC(I,J,bi,bj)
171     & * ( press(I,J,bi,bj) - press(I-1,J,bi,bj) ) )
172     C
173 mlosch 1.7 C then FY = (d/dy)*sigma
174 mlosch 1.5 C + d/dy [(eta+zeta) d/dy] V
175     FY = _recip_dyC(I,J,bi,bj) *
176     & ( dVdy(I,J ) * etaPlusZeta(I,J )
177     & - dVdy(I,J-1) * etaPlusZeta(I,J-1) )
178     C + d/dx [eta d/dx] V
179     FY = FY + _recip_dxC(I,J,bi,bj) *
180     & ( eta(I ,J,bi,bj) * dVdx(I ,J)
181     & - eta(I-1,J,bi,bj) * dVdx(I-1,J) )
182     C - d/dy [(zeta-eta) tanphi/a] V
183     FY = FY - _recip_dyC(I,J,bi,bj) * recip_rSphere * (
184     & zetaMinusEta(I,J ) * tanPhiAtU(I,J ,bi,bj)
185     & * 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J+1,1,bi,bj))
186     & - zetaMinusEta(I,J-1) * tanPhiAtU(I,J-1,bi,bj)
187     & * 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J-1,1,bi,bj)) )
188     C 2*eta tanphi/a ( - tanphi/a - d/dy) V
189     FY = FY - TWO*etaMeanV(I,J) * recip_rSphere
190     & * _tanPhiAtV(I,J,bi,bj) * (
191     & _tanPhiAtV(I,J,bi,bj) * recip_rSphere
192     & + _recip_dyC(I,J,bi,bj) *
193     & ( 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J+1,1,bi,bj))
194     & - 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J-1,1,bi,bj)) ) )
195     C + d/dy[ (zeta-eta) dU/dx ]
196     FY = FY +
197     & ( zetaMinusEta(I,J )*dUdx(I,J )
198     & - zetaMinusEta(I,J-1)*dUdx(I,J-1) )
199     & * _recip_dyC(I,J,bi,bj)
200     C + d/dx[ eta dU/dy ]
201     FY = FY + _recip_dxG(I,J,bi,bj) *
202     & ( etaMeanZ(I+1,J) * dUdy(I+1,J)
203     & - etaMeanZ(I ,J) * dUdy(I ,J) )
204     C + d/dx[ eta * (tanphi/a) * U ]
205     FY = FY + (
206     & etaMeanZ(I+1,J) * 0.5 *
207     & ( uIce(I+1,J ,1,bi,bj) * _tanPhiAtU(I+1,J ,bi,bj)
208     & + uIce(I+1,J-1,1,bi,bj) * _tanPhiAtU(I+1,J-1,bi,bj) )
209     & - etaMeanZ(I ,J) * 0.5 *
210     & ( uIce(I ,J ,1,bi,bj) * _tanPhiAtU(I ,J ,bi,bj)
211     & + uIce(I ,J-1,1,bi,bj) * _tanPhiAtU(I ,J ,bi,bj) )
212     & ) * _recip_dxG(I,J,bi,bj)*recip_rSphere
213     C + 2*eta*(tanphi/a) dU/dx
214     FY = FY +
215     & TWO * etaMeanV(I,J)*TWO * _tanPhiAtV(I,J,bi,bj)
216     & * ( uIce(I+1,J,1,bi,bj)+uIce(I+1,J-1,1,bi,bj)
217     & - uIce(I ,J,1,bi,bj)-uIce(I ,J-1,1,bi,bj) )
218     & * _recip_dxG(I,J,bi,bj) * recip_rSphere
219     C - (d/dy) P/2
220     FY = _maskS(I,J,1,bi,bj) * ( FY - _recip_dyC(I,J,bi,bj)
221     & * ( press(I,J,bi,bj) - press(I,J-1,bi,bj) ) )
222     C
223     C recompute wind stress over ice (done already in seaice_dynsolver,
224     C but not saved)
225     fuIce = 0.5 _d 0 *
226     & ( DAIRN(I ,J,bi,bj)*(
227 mlosch 1.6 & COSWIN*uWind(I ,J,bi,bj)
228     & -SIGN(SINWIN, _fCori(I ,J,bi,bj))*vWind(I ,J,bi,bj) )
229 mlosch 1.5 & + DAIRN(I-1,J,bi,bj)*(
230 mlosch 1.6 & COSWIN*uWind(I-1,J,bi,bj)
231     & -SIGN(SINWIN, _fCori(I-1,J,bi,bj))*vWind(I-1,J,bi,bj) )
232 mlosch 1.5 & )
233     fvIce = 0.5 _d 0 *
234     & ( DAIRN(I,J ,bi,bj)*(
235 mlosch 1.6 & SIGN(SINWIN, _fCori(I ,J,bi,bj))*uWind(I,J ,bi,bj)
236     & +COSWIN*vWind(I,J ,bi,bj) )
237 mlosch 1.5 & + DAIRN(I,J-1,bi,bj)*(
238 mlosch 1.6 & SIGN(SINWIN, _fCori(I,J-1,bi,bj))*uWind(I,J-1,bi,bj)
239     & +COSWIN*vWind(I,J-1,bi,bj) )
240 mlosch 1.5 & )
241     C average wind stress over ice and ocean and apply averaged wind
242     C stress and internal ice stresses to surface layer of ocean
243     areaW = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
244     areaS = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
245 mlosch 1.7 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIce + FX
246     fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIce + FY
247 mlosch 1.5 END DO
248     END DO
249     ENDDO
250     ENDDO
251     ELSE
252    
253     C-- Compute ice-affected wind stress (interpolate to U/V-points)
254     C by averaging wind stress and ice-ocean stress according to
255     C ice cover
256 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
257     DO bi=myBxLo(myThid),myBxHi(myThid)
258     DO j=1,sNy
259     DO i=1,sNx
260 mlosch 1.6 fuIce=HALF*( DWATN(I,J,bi,bj)+DWATN(I,J+1,bi,bj) )*
261 mlosch 1.1 & COSWAT *
262     & ( UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj) )
263 mlosch 1.6 & - SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
264     & ( DWATN(I ,J,bi,bj) *
265     & 0.5 _d 0*(vIce(I ,J ,1,bi,bj)-GWATY(I ,J ,bi,bj)
266     & +vIce(I ,J+1,1,bi,bj)-GWATY(I ,J+1,bi,bj))
267     & + DWATN(I-1,J,bi,bj) *
268     & 0.5 _d 0*(vIce(I-1,J ,1,bi,bj)-GWATY(I-1,J ,bi,bj)
269     & +vIce(I-1,J+1,1,bi,bj)-GWATY(I-1,J+1,bi,bj))
270 mlosch 1.1 & )
271 mlosch 1.6 fvIce=HALF*( DWATN(I,J,bi,bj)+DWATN(I+1,J,bi,bj) )*
272     & COSWAT *
273     & ( VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj) )
274     & + SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
275     & ( DWATN(I,J ,bi,bj) *
276     & 0.5 _d 0*(uIce(I ,J ,1,bi,bj)-GWATX(I ,J ,bi,bj)
277     & +uIce(I+1,J ,1,bi,bj)-GWATX(I+1,J ,bi,bj))
278     & + DWATN(I,J-1,bi,bj) *
279     & 0.5 _d 0*(uIce(I ,J-1,1,bi,bj)-GWATX(I ,J-1,bi,bj)
280     & +uIce(I+1,J-1,1,bi,bj)-GWATX(I+1,J-1,bi,bj))
281 mlosch 1.1 & )
282 mlosch 1.4 areaW = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
283     areaS = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
284     fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIce
285     fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIce
286 mlosch 1.1 ENDDO
287     ENDDO
288     ENDDO
289     ENDDO
290 mlosch 1.5 ENDIF
291 mlosch 1.1 CALL EXCH_UV_XY_RS(fu, fv, .TRUE., myThid)
292 mlosch 1.3
293 mlosch 1.1 #endif /* not SEAICE_CGRID */
294    
295     RETURN
296     END

  ViewVC Help
Powered by ViewVC 1.1.22