/[MITgcm]/MITgcm/pkg/seaice/seaice_ocean_stress.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_ocean_stress.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download)
Tue Apr 24 18:38:15 2007 UTC (17 years, 1 month ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint59a
Changes since 1.15: +7 -6 lines
one day we will get it right: replace ALLOW_EVP with SEAICE_ALLOW_EVP

1 mlosch 1.16 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_ocean_stress.F,v 1.15 2007/04/24 17:54:44 heimbach Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5    
6     CStartOfInterface
7     SUBROUTINE SEAICE_OCEAN_STRESS(
8     I myTime, myIter, myThid )
9     C /==========================================================\
10     C | SUBROUTINE SEAICE_OCEAN_STRESS |
11     C | o Calculate ocean surface stresses |
12     C | - C-grid version |
13     C |==========================================================|
14     C \==========================================================/
15     IMPLICIT NONE
16    
17     C === Global variables ===
18     #include "SIZE.h"
19     #include "EEPARAMS.h"
20     #include "PARAMS.h"
21 mlosch 1.5 #include "GRID.h"
22 mlosch 1.1 #include "FFIELDS.h"
23     #include "SEAICE.h"
24     #include "SEAICE_PARAMS.h"
25    
26     C === Routine arguments ===
27     C myTime - Simulation time
28     C myIter - Simulation timestep number
29     C myThid - Thread no. that called this routine.
30     _RL myTime
31     INTEGER myIter
32     INTEGER myThid
33     CEndOfInterface
34    
35     #ifdef SEAICE_CGRID
36     C === Local variables ===
37     C i,j,bi,bj - Loop counters
38    
39     INTEGER i, j, bi, bj
40 mlosch 1.5 _RL SINWAT, COSWAT, SINWIN, COSWIN
41 mlosch 1.11 _RL fuIceLoc, fvIceLoc, FX, FY
42 mlosch 1.4 _RL areaW, areaS
43 mlosch 1.1
44 mlosch 1.13 _RL e11 (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
45     _RL e22 (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
46     _RL e12 (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
47 mlosch 1.5 _RL press (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
48 mlosch 1.14 _RL sig11 (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49     _RL sig22 (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50     _RL sig12 (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
51     _RL eplus, eminus
52 mlosch 1.5
53 mlosch 1.1 c introduce turning angle (default is zero)
54     SINWAT=SIN(SEAICE_waterTurnAngle*deg2rad)
55     COSWAT=COS(SEAICE_waterTurnAngle*deg2rad)
56 mlosch 1.5 SINWIN=SIN(SEAICE_airTurnAngle*deg2rad)
57     COSWIN=COS(SEAICE_airTurnAngle*deg2rad)
58 mlosch 1.1
59     C-- Update overlap regions
60     CALL EXCH_UV_XY_RL(WINDX, WINDY, .TRUE., myThid)
61    
62     #ifndef SEAICE_EXTERNAL_FLUXES
63 mlosch 1.3 C-- Interpolate wind stress (N/m^2) from C-points of C-grid
64     C to U and V points of C-grid for forcing the ocean model.
65 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
66     DO bi=myBxLo(myThid),myBxHi(myThid)
67     DO j=1,sNy
68     DO i=1,sNx
69 mlosch 1.3 fu(I,J,bi,bj)=0.5*(WINDX(I,J,bi,bj) + WINDX(I-1,J,bi,bj))
70     fv(I,J,bi,bj)=0.5*(WINDY(I,J,bi,bj) + WINDY(I,J-1,bi,bj))
71 mlosch 1.1 ENDDO
72     ENDDO
73     ENDDO
74     ENDDO
75     #endif /* ifndef SEAICE_EXTERNAL_FLUXES */
76    
77 mlosch 1.5 IF ( useHB87StressCoupling ) THEN
78     C
79     C use an intergral over ice and ocean surface layer to define
80     C surface stresses on ocean following Hibler and Bryan (1987, JPO)
81     C
82 mlosch 1.14 C recompute strain rates, viscosities, etc. from updated ice velocities
83     IF ( .NOT. SEAICEuseEVP ) THEN
84 mlosch 1.16 C only for EVP we already have the stress components otherwise we need
85     C to recompute them here
86 mlosch 1.14 CALL SEAICE_CALC_STRAINRATES(
87     I uIce(1-Olx,1-Oly,1,1,1), vIce(1-Olx,1-Oly,1,1,1),
88     O e11, e22, e12,
89     I myThid )
90    
91     CALL SEAICE_CALC_VISCOSITIES(
92     I e11, e22, e12, zMin, zMax, hEffM, press0,
93     O eta, zeta, press,
94     I myThid )
95     ENDIF
96 mlosch 1.5 C re-compute internal stresses with updated ice velocities
97     DO bj=myByLo(myThid),myByHi(myThid)
98     DO bi=myBxLo(myThid),myBxHi(myThid)
99 mlosch 1.14 IF ( .NOT. SEAICEuseEVP ) THEN
100     C only for EVP we already have computed the stress divergences, for
101     C anything else we have to do it here
102     DO j=1-Oly,sNy+Oly
103     DO i=1-Olx,sNx+Olx
104     sig11(I,J) = 0. _d 0
105     sig22(I,J) = 0. _d 0
106     sig12(I,J) = 0. _d 0
107     ENDDO
108 mlosch 1.5 ENDDO
109 mlosch 1.14
110     DO j=1-Oly+1,sNy+Oly-1
111     DO i=1-Olx+1,sNx+Olx-1
112     eplus = e11(I,J,bi,bj) + e22(I,J,bi,bj)
113     eminus= e11(I,J,bi,bj) - e22(I,J,bi,bj)
114     sig11(I,J) = zeta(I,J,bi,bj)*eplus + eta(I,J,bi,bj)*eminus
115     & - 0.5 _d 0 * PRESS(I,J,bi,bj)
116     sig22(I,J) = zeta(I,J,bi,bj)*eplus - eta(I,J,bi,bj)*eminus
117     & - 0.5 _d 0 * PRESS(I,J,bi,bj)
118     sig12(I,J) = 2. _d 0 * e12(I,J,bi,bj) *
119     & ( eta(I,J ,bi,bj) + eta(I-1,J ,bi,bj)
120     & + eta(I,J-1,bi,bj) + eta(I-1,J-1,bi,bj) )
121     & /MAX(1. _d 0,
122     & hEffM(I,J ,bi,bj) + hEffM(I-1,J ,bi,bj)
123     & + hEffM(I,J-1,bi,bj) + hEffM(I-1,J-1,bi,bj))
124     ENDDO
125     ENDDO
126     C evaluate divergence of stress and apply to forcing
127     DO J=1,sNy
128     DO I=1,sNx
129     FX = ( sig11(I ,J ) * _dyF(I ,J ,bi,bj)
130     & - sig11(I-1,J ) * _dyF(I-1,J ,bi,bj)
131     & + sig12(I ,J+1) * _dxV(I ,J+1,bi,bj)
132     & - sig12(I ,J ) * _dxV(I ,J ,bi,bj)
133     & ) * recip_rAw(I,J,bi,bj)
134     & -
135     & ( sig12(I,J) + sig12(I,J+1) )
136     & * _tanPhiAtU(I,J,bi,bj) * recip_rSphere
137     & +
138     & ( sig22(I,J) + sig22(I-1,J) ) * 0.5 _d 0
139     & * _tanPhiAtU(I,J,bi,bj) * recip_rSphere
140     C one metric term missing for general curvilinear coordinates
141     FY = ( sig22(I ,J ) * _dxF(I ,J ,bi,bj)
142     & - sig22(I ,J-1) * _dxF(I ,J-1,bi,bj)
143     & + sig12(I+1,J ) * _dyU(I+1,J ,bi,bj)
144     & - sig12(I ,J ) * _dyU(I ,J ,bi,bj)
145     & ) * recip_rAs(I,J,bi,bj)
146     & -
147     & ( sig22(I,J) + sig22(I,J-1) ) * 0.5 _d 0
148     & * _tanPhiAtV(I,J,bi,bj) * recip_rSphere
149     C two metric terms missing for general curvilinear coordinates
150     C average wind stress over ice and ocean and apply averaged wind
151     C stress and internal ice stresses to surface layer of ocean
152     areaW = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
153     & * SEAICEstressFactor
154     areaS = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
155     & * SEAICEstressFactor
156     fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)
157     & + areaW*taux(I,J,bi,bj)
158     & + FX * SEAICEstressFactor
159     fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)
160     & + areaS*tauy(I,J,bi,bj)
161     & + FY * SEAICEstressFactor
162     C save stress divergence for later
163 mlosch 1.16 #ifdef SEAICE_ALLOW_EVP
164 mlosch 1.14 stressDivergenceX(I,J,bi,bj) = FX
165     stressDivergenceY(I,J,bi,bj) = FY
166 mlosch 1.16 #endif /* SEAICE_ALLOW_EVP */
167 mlosch 1.14 ENDDO
168     ENDDO
169     ELSE
170 mlosch 1.16 #ifdef SEAICE_ALLOW_EVP
171 mlosch 1.14 DO J=1,sNy
172     DO I=1,sNx
173 mlosch 1.5 C average wind stress over ice and ocean and apply averaged wind
174     C stress and internal ice stresses to surface layer of ocean
175 mlosch 1.14 areaW = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
176     & * SEAICEstressFactor
177     areaS = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
178     & * SEAICEstressFactor
179     fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)
180     & + areaW*taux(I,J,bi,bj)
181     & + stressDivergenceX(I,J,bi,bj) * SEAICEstressFactor
182     fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)
183     & + areaS*tauy(I,J,bi,bj)
184     & + stressDivergenceY(I,J,bi,bj) * SEAICEstressFactor
185     ENDDO
186     ENDDO
187 mlosch 1.16 #endif /* SEAICE_ALLOW_EVP */
188 mlosch 1.14 ENDIF
189 mlosch 1.5 ENDDO
190     ENDDO
191     ELSE
192    
193     C-- Compute ice-affected wind stress (interpolate to U/V-points)
194     C by averaging wind stress and ice-ocean stress according to
195     C ice cover
196 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
197     DO bi=myBxLo(myThid),myBxHi(myThid)
198     DO j=1,sNy
199     DO i=1,sNx
200 mlosch 1.11 fuIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I,J+1,bi,bj) )*
201 mlosch 1.1 & COSWAT *
202     & ( UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj) )
203 mlosch 1.6 & - SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
204     & ( DWATN(I ,J,bi,bj) *
205     & 0.5 _d 0*(vIce(I ,J ,1,bi,bj)-GWATY(I ,J ,bi,bj)
206     & +vIce(I ,J+1,1,bi,bj)-GWATY(I ,J+1,bi,bj))
207     & + DWATN(I-1,J,bi,bj) *
208     & 0.5 _d 0*(vIce(I-1,J ,1,bi,bj)-GWATY(I-1,J ,bi,bj)
209     & +vIce(I-1,J+1,1,bi,bj)-GWATY(I-1,J+1,bi,bj))
210 mlosch 1.1 & )
211 mlosch 1.11 fvIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I+1,J,bi,bj) )*
212 mlosch 1.6 & COSWAT *
213     & ( VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj) )
214     & + SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
215     & ( DWATN(I,J ,bi,bj) *
216     & 0.5 _d 0*(uIce(I ,J ,1,bi,bj)-GWATX(I ,J ,bi,bj)
217     & +uIce(I+1,J ,1,bi,bj)-GWATX(I+1,J ,bi,bj))
218     & + DWATN(I,J-1,bi,bj) *
219     & 0.5 _d 0*(uIce(I ,J-1,1,bi,bj)-GWATX(I ,J-1,bi,bj)
220     & +uIce(I+1,J-1,1,bi,bj)-GWATX(I+1,J-1,bi,bj))
221 mlosch 1.1 & )
222 mlosch 1.4 areaW = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
223 mlosch 1.9 & * SEAICEstressFactor
224 mlosch 1.4 areaS = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
225 mlosch 1.9 & * SEAICEstressFactor
226 mlosch 1.11 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIceLoc
227     fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIceLoc
228 mlosch 1.1 ENDDO
229     ENDDO
230     ENDDO
231     ENDDO
232 mlosch 1.5 ENDIF
233 mlosch 1.1 CALL EXCH_UV_XY_RS(fu, fv, .TRUE., myThid)
234 mlosch 1.3
235 mlosch 1.1 #endif /* not SEAICE_CGRID */
236    
237     RETURN
238     END

  ViewVC Help
Powered by ViewVC 1.1.22