/[MITgcm]/MITgcm/pkg/seaice/seaice_ocean_stress.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_ocean_stress.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (hide annotations) (download)
Wed Apr 18 18:06:52 2007 UTC (17 years, 1 month ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint59
Changes since 1.11: +1 -2 lines
remove '#include SEAICE_FFIELDS.h'

1 mlosch 1.12 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_ocean_stress.F,v 1.11 2007/04/17 16:13:53 mlosch Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5    
6     CStartOfInterface
7     SUBROUTINE SEAICE_OCEAN_STRESS(
8     I myTime, myIter, myThid )
9     C /==========================================================\
10     C | SUBROUTINE SEAICE_OCEAN_STRESS |
11     C | o Calculate ocean surface stresses |
12     C | - C-grid version |
13     C |==========================================================|
14     C \==========================================================/
15     IMPLICIT NONE
16    
17     C === Global variables ===
18     #include "SIZE.h"
19     #include "EEPARAMS.h"
20     #include "PARAMS.h"
21 mlosch 1.5 #include "GRID.h"
22 mlosch 1.1 #include "FFIELDS.h"
23     #include "SEAICE.h"
24     #include "SEAICE_PARAMS.h"
25    
26     C === Routine arguments ===
27     C myTime - Simulation time
28     C myIter - Simulation timestep number
29     C myThid - Thread no. that called this routine.
30     _RL myTime
31     INTEGER myIter
32     INTEGER myThid
33     CEndOfInterface
34    
35     #ifdef SEAICE_CGRID
36     C === Local variables ===
37     C i,j,bi,bj - Loop counters
38    
39     INTEGER i, j, bi, bj
40 mlosch 1.5 _RL SINWAT, COSWAT, SINWIN, COSWIN
41 mlosch 1.11 _RL fuIceLoc, fvIceLoc, FX, FY
42 mlosch 1.4 _RL areaW, areaS
43 mlosch 1.1
44 mlosch 1.5 _RL press (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy)
45     _RL etaPlusZeta (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
46     _RL zetaMinusEta(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
47     _RL etaMeanZ (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
48     _RL etaMeanU (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49     _RL etaMeanV (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50     _RL dVdx (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
51     _RL dVdy (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
52     _RL dUdx (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
53     _RL dUdy (1-Olx:sNx+Olx,1-Oly:sNy+Oly)
54    
55 mlosch 1.1 c introduce turning angle (default is zero)
56     SINWAT=SIN(SEAICE_waterTurnAngle*deg2rad)
57     COSWAT=COS(SEAICE_waterTurnAngle*deg2rad)
58 mlosch 1.5 SINWIN=SIN(SEAICE_airTurnAngle*deg2rad)
59     COSWIN=COS(SEAICE_airTurnAngle*deg2rad)
60 mlosch 1.1
61     C-- Update overlap regions
62     CALL EXCH_UV_XY_RL(WINDX, WINDY, .TRUE., myThid)
63    
64     #ifndef SEAICE_EXTERNAL_FLUXES
65 mlosch 1.3 C-- Interpolate wind stress (N/m^2) from C-points of C-grid
66     C to U and V points of C-grid for forcing the ocean model.
67 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
68     DO bi=myBxLo(myThid),myBxHi(myThid)
69     DO j=1,sNy
70     DO i=1,sNx
71 mlosch 1.3 fu(I,J,bi,bj)=0.5*(WINDX(I,J,bi,bj) + WINDX(I-1,J,bi,bj))
72     fv(I,J,bi,bj)=0.5*(WINDY(I,J,bi,bj) + WINDY(I,J-1,bi,bj))
73 mlosch 1.1 ENDDO
74     ENDDO
75     ENDDO
76     ENDDO
77     #endif /* ifndef SEAICE_EXTERNAL_FLUXES */
78    
79 mlosch 1.5 IF ( useHB87StressCoupling ) THEN
80     C
81     C use an intergral over ice and ocean surface layer to define
82     C surface stresses on ocean following Hibler and Bryan (1987, JPO)
83     C
84     C recompute viscosities from updated ice velocities
85     CALL SEAICE_CALC_VISCOSITIES(
86     I uIce(1-Olx,1-Oly,1,1,1), vIce(1-Olx,1-Oly,1,1,1),
87     I zMin, zMax, hEffM, press0,
88     O eta, zeta, press,
89 mlosch 1.8 #ifdef SEAICE_ALLOW_EVP
90     O seaice_div, seaice_tension, seaice_shear,
91     #endif /* SEAICE_ALLOW_EVP */
92 mlosch 1.5 I myThid )
93     C re-compute internal stresses with updated ice velocities
94     DO bj=myByLo(myThid),myByHi(myThid)
95     DO bi=myBxLo(myThid),myBxHi(myThid)
96     DO j=1-Oly+1,sNy+Oly-1
97     DO i=1-Olx+1,sNx+Olx-1
98     etaPlusZeta (I,J) = eta(I,J,bi,bj) + zeta(I,J,bi,bj)
99     zetaMinusEta(I,J) = zeta(I,J,bi,bj) - eta(I,J,bi,bj)
100     etaMeanU (I,J) =
101     & HALF*(ETA (I,J,bi,bj) + ETA (I-1,J ,bi,bj))
102     etaMeanV (I,J) =
103     & HALF*(ETA (I,J,bi,bj) + ETA (I ,J-1,bi,bj))
104     etaMeanZ (I,J) = QUART *
105     & ( eta(I ,J,bi,bj) + eta(I ,J-1,bi,bj)
106     & + eta(I-1,J,bi,bj) + eta(I-1,J-1,bi,bj) )
107     dUdx(I,J) = ( uIce(I+1,J,1,bi,bj) - uIce(I,J,1,bi,bj) )
108     & * _recip_dxF(I,J,bi,bj)
109     dUdy(I,J) = ( uIce(I,J+1,1,bi,bj) - uIce(I,J,1,bi,bj) )
110     & * _recip_dyU(I,J+1,bi,bj)
111     dVdx(I,J) = ( vIce(I+1,J,1,bi,bj) - vIce(I,J,1,bi,bj) )
112     & * _recip_dxV(I+1,J,bi,bj)
113     dVdy(I,J) = ( vIce(I,J+1,1,bi,bj) - vIce(I,J,1,bi,bj) )
114     & * _recip_dyF(I,J,bi,bj)
115     ENDDO
116     ENDDO
117     DO J = 1,sNy
118     DO I = 1,sNx
119 mlosch 1.7 C First FX = (d/dx)*sigma
120 mlosch 1.5 C + d/dx[ eta+zeta d/dx ] U
121     FX = _recip_dxC(I,J,bi,bj) *
122     & ( etaPlusZeta(I ,J) * dUdx(I ,J)
123     & - etaPlusZeta(I-1,J) * dUdx(I-1,J) )
124     C + (d/dy)[eta*(d/dy + tanphi/a)] U (also on UVRT1/2)
125     FX = FX + _recip_dyG(I,J,bi,bj) * (
126     & ( etaMeanZ(I,J+1) * dUdy(I,J+1)
127     & - etaMeanZ(I,J ) * dUdy(I,J )
128     & )
129     & - ( etaMeanZ(I,J+1)
130     & * ( uIce(I,J+1,1,bi,bj)+uIce(I,J,1,bi,bj) )
131     & - etaMeanZ(I,J )
132     & * ( uIce(I,J-1,1,bi,bj)+uIce(I,J,1,bi,bj) ) )
133     & * 0.5 _d 0 * _tanPhiAtU(I,J,bi,bj)
134     & * recip_rSphere )
135     C - 2*eta*(tanphi/a) * ( tanphi/a ) U
136     FX = FX - TWO * uIce(I,J,1,bi,bj)
137     & * etaMeanU(I,J)*recip_rSphere*recip_rSphere
138     & * _tanPhiAtU(I,J,bi,bj) * _tanPhiAtU(I,J,bi,bj)
139     C + d/dx[ (zeta-eta) dV/dy]
140     FX = FX +
141     & ( zetaMinusEta(I ,J ) * dVdy(I ,J )
142     & - zetaMinusEta(I-1,J ) * dVdy(I-1,J )
143     & ) * _recip_dxC(I,J,bi,bj)
144     C + d/dy[ eta dV/x ]
145     FX = FX + (
146     & etaMeanZ(I,J+1)
147     & * ( vIce(I ,J+1,1,bi,bj) - vIce(I-1,J+1,1,bi,bj) )
148     & * _recip_dxV(I,J+1,bi,bj)
149     & - etaMeanZ(I,J )
150     & * ( vIce(I ,J,1,bi,bj) - vIce(I-1,J,1,bi,bj) )
151     & * _recip_dxV(I,J,bi,bj)
152     & ) * _recip_dyG(I,J,bi,bj)
153     C - d/dx[ (eta+zeta) * v * (tanphi/a) ]
154     FX = FX - (
155     & etaPlusZeta(I ,J)
156     & * 0.5 * (vIce(I ,J,1,bi,bj)+vIce(I ,J+1,1,bi,bj))
157     & * 0.5 * ( _tanPhiAtU(I ,J,bi,bj)
158     & + _tanPhiAtU(I+1,J,bi,bj) )
159     & - etaPlusZeta(I-1,J) *
160     & * 0.5 * (vIce(I-1,J,1,bi,bj)+vIce(I-1,J+1,1,bi,bj))
161     & * 0.5 * ( _tanPhiAtU(I-1,J,bi,bj)
162     & + _tanPhiAtU(I ,J,bi,bj) )
163     & )* _recip_dxC(I,J,bi,bj)*recip_rSphere
164     C - 2*eta*(tanphi/a) * dV/dx
165     FX = FX
166     & -TWO * etaMeanU(I,J) * _tanPhiAtV(I,J,bi,bj)
167     & *recip_rSphere
168     & *(vIce(I ,J,1,bi,bj) + vIce(I ,J+1,1,bi,bj)
169     & - vIce(I-1,J,1,bi,bj) - vIce(I-1,J+1,1,bi,bj))
170     & * _recip_dxC(I,J,bi,bj)
171     C - (d/dx) P/2
172     FX = _maskW(I,J,1,bi,bj) * ( FX - _recip_dxC(I,J,bi,bj)
173     & * ( press(I,J,bi,bj) - press(I-1,J,bi,bj) ) )
174     C
175 mlosch 1.7 C then FY = (d/dy)*sigma
176 mlosch 1.5 C + d/dy [(eta+zeta) d/dy] V
177     FY = _recip_dyC(I,J,bi,bj) *
178     & ( dVdy(I,J ) * etaPlusZeta(I,J )
179     & - dVdy(I,J-1) * etaPlusZeta(I,J-1) )
180     C + d/dx [eta d/dx] V
181     FY = FY + _recip_dxC(I,J,bi,bj) *
182     & ( eta(I ,J,bi,bj) * dVdx(I ,J)
183     & - eta(I-1,J,bi,bj) * dVdx(I-1,J) )
184     C - d/dy [(zeta-eta) tanphi/a] V
185     FY = FY - _recip_dyC(I,J,bi,bj) * recip_rSphere * (
186     & zetaMinusEta(I,J ) * tanPhiAtU(I,J ,bi,bj)
187     & * 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J+1,1,bi,bj))
188     & - zetaMinusEta(I,J-1) * tanPhiAtU(I,J-1,bi,bj)
189     & * 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J-1,1,bi,bj)) )
190     C 2*eta tanphi/a ( - tanphi/a - d/dy) V
191     FY = FY - TWO*etaMeanV(I,J) * recip_rSphere
192     & * _tanPhiAtV(I,J,bi,bj) * (
193     & _tanPhiAtV(I,J,bi,bj) * recip_rSphere
194     & + _recip_dyC(I,J,bi,bj) *
195     & ( 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J+1,1,bi,bj))
196     & - 0.5 * ( vIce(I,J,1,bi,bj) + vIce(I,J-1,1,bi,bj)) ) )
197     C + d/dy[ (zeta-eta) dU/dx ]
198     FY = FY +
199     & ( zetaMinusEta(I,J )*dUdx(I,J )
200     & - zetaMinusEta(I,J-1)*dUdx(I,J-1) )
201     & * _recip_dyC(I,J,bi,bj)
202     C + d/dx[ eta dU/dy ]
203     FY = FY + _recip_dxG(I,J,bi,bj) *
204     & ( etaMeanZ(I+1,J) * dUdy(I+1,J)
205     & - etaMeanZ(I ,J) * dUdy(I ,J) )
206     C + d/dx[ eta * (tanphi/a) * U ]
207     FY = FY + (
208     & etaMeanZ(I+1,J) * 0.5 *
209     & ( uIce(I+1,J ,1,bi,bj) * _tanPhiAtU(I+1,J ,bi,bj)
210     & + uIce(I+1,J-1,1,bi,bj) * _tanPhiAtU(I+1,J-1,bi,bj) )
211     & - etaMeanZ(I ,J) * 0.5 *
212     & ( uIce(I ,J ,1,bi,bj) * _tanPhiAtU(I ,J ,bi,bj)
213     & + uIce(I ,J-1,1,bi,bj) * _tanPhiAtU(I ,J ,bi,bj) )
214     & ) * _recip_dxG(I,J,bi,bj)*recip_rSphere
215     C + 2*eta*(tanphi/a) dU/dx
216     FY = FY +
217     & TWO * etaMeanV(I,J)*TWO * _tanPhiAtV(I,J,bi,bj)
218     & * ( uIce(I+1,J,1,bi,bj)+uIce(I+1,J-1,1,bi,bj)
219     & - uIce(I ,J,1,bi,bj)-uIce(I ,J-1,1,bi,bj) )
220     & * _recip_dxG(I,J,bi,bj) * recip_rSphere
221     C - (d/dy) P/2
222     FY = _maskS(I,J,1,bi,bj) * ( FY - _recip_dyC(I,J,bi,bj)
223     & * ( press(I,J,bi,bj) - press(I,J-1,bi,bj) ) )
224     C average wind stress over ice and ocean and apply averaged wind
225     C stress and internal ice stresses to surface layer of ocean
226     areaW = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
227 mlosch 1.9 & * SEAICEstressFactor
228 mlosch 1.5 areaS = 0.5 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
229 mlosch 1.9 & * SEAICEstressFactor
230 mlosch 1.11 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)
231     & + areaW*taux(I,J,bi,bj)
232 mlosch 1.9 & + FX * SEAICEstressFactor
233 mlosch 1.11 fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)
234     & + areaS*tauy(I,J,bi,bj)
235 mlosch 1.9 & + FY * SEAICEstressFactor
236 mlosch 1.5 END DO
237     END DO
238     ENDDO
239     ENDDO
240     ELSE
241    
242     C-- Compute ice-affected wind stress (interpolate to U/V-points)
243     C by averaging wind stress and ice-ocean stress according to
244     C ice cover
245 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
246     DO bi=myBxLo(myThid),myBxHi(myThid)
247     DO j=1,sNy
248     DO i=1,sNx
249 mlosch 1.11 fuIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I,J+1,bi,bj) )*
250 mlosch 1.1 & COSWAT *
251     & ( UICE(I,J,1,bi,bj)-GWATX(I,J,bi,bj) )
252 mlosch 1.6 & - SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
253     & ( DWATN(I ,J,bi,bj) *
254     & 0.5 _d 0*(vIce(I ,J ,1,bi,bj)-GWATY(I ,J ,bi,bj)
255     & +vIce(I ,J+1,1,bi,bj)-GWATY(I ,J+1,bi,bj))
256     & + DWATN(I-1,J,bi,bj) *
257     & 0.5 _d 0*(vIce(I-1,J ,1,bi,bj)-GWATY(I-1,J ,bi,bj)
258     & +vIce(I-1,J+1,1,bi,bj)-GWATY(I-1,J+1,bi,bj))
259 mlosch 1.1 & )
260 mlosch 1.11 fvIceLoc=HALF*( DWATN(I,J,bi,bj)+DWATN(I+1,J,bi,bj) )*
261 mlosch 1.6 & COSWAT *
262     & ( VICE(I,J,1,bi,bj)-GWATY(I,J,bi,bj) )
263     & + SIGN(SINWAT, _fCori(I,J,bi,bj)) * 0.5 _d 0 *
264     & ( DWATN(I,J ,bi,bj) *
265     & 0.5 _d 0*(uIce(I ,J ,1,bi,bj)-GWATX(I ,J ,bi,bj)
266     & +uIce(I+1,J ,1,bi,bj)-GWATX(I+1,J ,bi,bj))
267     & + DWATN(I,J-1,bi,bj) *
268     & 0.5 _d 0*(uIce(I ,J-1,1,bi,bj)-GWATX(I ,J-1,bi,bj)
269     & +uIce(I+1,J-1,1,bi,bj)-GWATX(I+1,J-1,bi,bj))
270 mlosch 1.1 & )
271 mlosch 1.4 areaW = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I-1,J,1,bi,bj))
272 mlosch 1.9 & * SEAICEstressFactor
273 mlosch 1.4 areaS = 0.5 _d 0 * (AREA(I,J,1,bi,bj) + AREA(I,J-1,1,bi,bj))
274 mlosch 1.9 & * SEAICEstressFactor
275 mlosch 1.11 fu(I,J,bi,bj)=(ONE-areaW)*fu(I,J,bi,bj)+areaW*fuIceLoc
276     fv(I,J,bi,bj)=(ONE-areaS)*fv(I,J,bi,bj)+areaS*fvIceLoc
277 mlosch 1.1 ENDDO
278     ENDDO
279     ENDDO
280     ENDDO
281 mlosch 1.5 ENDIF
282 mlosch 1.1 CALL EXCH_UV_XY_RS(fu, fv, .TRUE., myThid)
283 mlosch 1.3
284 mlosch 1.1 #endif /* not SEAICE_CGRID */
285    
286     RETURN
287     END

  ViewVC Help
Powered by ViewVC 1.1.22