--- MITgcm/pkg/seaice/seaice_jfnk.F 2013/01/17 08:51:15 1.16 +++ MITgcm/pkg/seaice/seaice_jfnk.F 2014/03/20 09:24:49 1.26 @@ -1,4 +1,4 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.16 2013/01/17 08:51:15 mlosch Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.26 2014/03/20 09:24:49 mlosch Exp $ C $Name: $ #include "SEAICE_OPTIONS.h" @@ -53,9 +53,7 @@ INTEGER myIter INTEGER myThid -#if ( (defined SEAICE_CGRID) && \ - (defined SEAICE_ALLOW_JFNK) && \ - (defined SEAICE_ALLOW_DYNAMICS) ) +#ifdef SEAICE_ALLOW_JFNK C !FUNCTIONS: LOGICAL DIFFERENT_MULTIPLE EXTERNAL DIFFERENT_MULTIPLE @@ -75,24 +73,27 @@ _RL JFNKresidual _RL JFNKresidualKm1 C parameters to compute convergence criterion - _RL phi_e, alp_e, JFNKgamma_lin + _RL JFNKgamma_lin _RL FGMRESeps _RL JFNKtol -C +C backward differences extrapolation factors + _RL bdfFac, bdfAlpha +C _RL recip_deltaT LOGICAL JFNKconverged, krylovConverged LOGICAL writeNow CHARACTER*(MAX_LEN_MBUF) msgBuf -C + C u/vIceRes :: residual of sea-ice momentum equations _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) -C vector version of the residuals - _RL resTmp (nVec,1,nSx,nSy) +C extra time level required for backward difference time stepping + _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) + _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C du/vIce :: ice velocity increment to be added to u/vIce _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) -C precomputed (= constant per Newton iteration) versions of +C precomputed (= constant per Newton iteration) versions of C zeta, eta, and DWATN, press _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) @@ -117,30 +118,52 @@ & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) & iOutFGMRES=1 -C +C backward difference extrapolation factors + bdfFac = 0. _d 0 + IF ( SEAICEuseBDF2 ) THEN + IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN + bdfFac = 0. _d 0 + ELSE + bdfFac = 0.5 _d 0 + ENDIF + ENDIF + bdfAlpha = 1. _d 0 + bdfFac + DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx uIceRes(I,J,bi,bj) = 0. _d 0 vIceRes(I,J,bi,bj) = 0. _d 0 duIce (I,J,bi,bj) = 0. _d 0 dvIce (I,J,bi,bj) = 0. _d 0 + ENDDO + ENDDO +C cycle ice velocities + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx + duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha + & + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac + dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha + & + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) ENDDO ENDDO +C As long as IMEX is not properly implemented leave this commented out +CML IF ( .NOT.SEAICEuseIMEX ) THEN C Compute things that do no change during the Newton iteration: -C sea-surface tilt and wind stress: -C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx +C sea-surface tilt and wind stress: +C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) - & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT + & + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) - & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT + & + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT ENDDO ENDDO +CML ENDIF ENDDO ENDDO C Start nonlinear Newton iteration: outer loop iteration @@ -149,8 +172,8 @@ newtonIter = newtonIter + 1 C Compute initial residual F(u), (includes computation of global C variables DWATN, zeta, and eta) - IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( - I duIce, dvIce, + IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( + I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) @@ -158,8 +181,8 @@ C constant for the preconditioner DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO j=1-Oly,sNy+Oly - DO i=1-Olx,sNx+Olx + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) etaPre(I,J,bi,bj) = eta(I,J,bi,bj) etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) @@ -170,18 +193,17 @@ ENDDO C compute convergence criterion for linear preconditioned FGMRES JFNKgamma_lin = JFNKgamma_lin_max - IF ( newtonIter.GT.1.AND.newtonIter.LE.100 + IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter & .AND.JFNKresidual.LT.JFNKres_t ) THEN -C Eisenstat, 1996, equ.(2.6) - phi_e = 1. _d 0 - alp_e = 1. _d 0 - JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e +C Eisenstat and Walker (1996), eq.(2.6) + JFNKgamma_lin = SEAICE_JFNKphi + & *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) ENDIF C save the residual for the next iteration JFNKresidualKm1 = JFNKresidual -C + C The Krylov iteration using FGMRES, the preconditioner is LSOR C for now. The code is adapted from SEAICE_LSR, but heavily stripped C down. @@ -189,24 +211,24 @@ C in that routine krylovIter = 0 iCode = 0 -C + JFNKconverged = JFNKresidual.LT.JFNKtol -C + C do Krylov loop only if convergence is not reached -C + IF ( .NOT.JFNKconverged ) THEN -C + C start Krylov iteration (FGMRES) -C + krylovConverged = .FALSE. FGMRESeps = JFNKgamma_lin * JFNKresidual - DO WHILE ( .NOT.krylovConverged ) + DO WHILE ( .NOT.krylovConverged ) C solution vector sol = du/vIce C residual vector (rhs) Fu = u/vIceRes -C output work vectors wk1, -> input work vector wk2 -C +C output work vectors wk1, -> input work vector wk2 + CALL SEAICE_FGMRES_DRIVER( - I uIceRes, vIceRes, + I uIceRes, vIceRes, U duIce, dvIce, iCode, I FGMRESeps, iOutFGMRES, I newtonIter, krylovIter, myTime, myIter, myThid ) @@ -214,17 +236,17 @@ C or product of matrix (Jacobian) times vector. For iCode = 0, terminate C iteration IF (iCode.EQ.1) THEN -C Call preconditioner +C Call preconditioner IF ( SOLV_MAX_ITERS .GT. 0 ) - & CALL SEAICE_PRECONDITIONER( - U duIce, dvIce, - I zetaPre, etaPre, etaZpre, dwatPre, + & CALL SEAICE_PRECONDITIONER( + U duIce, dvIce, + I zetaPre, etaPre, etaZpre, dwatPre, I newtonIter, krylovIter, myTime, myIter, myThid ) ELSEIF (iCode.GE.2) THEN C Compute Jacobian times vector CALL SEAICE_JACVEC( I uIce, vIce, uIceRes, vIceRes, - U duIce, dvIce, + U duIce, dvIce, I newtonIter, krylovIter, myTime, myIter, myThid ) ENDIF krylovConverged = iCode.EQ.0 @@ -234,9 +256,9 @@ C some output diagnostics IF ( debugLevel.GE.debLevA ) THEN _BEGIN_MASTER( myThid ) - totalNewtonItersLoc = + totalNewtonItersLoc = & SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter - WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') + WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') & ' S/R SEAICE_JFNK: Newton iterate / total, ', & 'JFNKgamma_lin, initial norm = ', & newtonIter, totalNewtonItersLoc, @@ -244,7 +266,7 @@ CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(3(A,I6))') - & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, + & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, & ' / ', totalNewtonItersLoc, & ', Nb. of FGMRES iterations = ', krylovIter CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -254,24 +276,29 @@ IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN krylovFails = krylovFails + 1 ENDIF -C Set the stopping criterion for the Newton iteration - IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual +C Set the stopping criterion for the Newton iteration and the +C criterion for the transition from accurate to approximate FGMRES + IF ( newtonIter .EQ. 1 ) THEN + JFNKtol=JFNKgamma_nonlin*JFNKresidual + IF ( JFNKres_tFac .NE. UNSET_RL ) + & JFNKres_t = JFNKresidual * JFNKres_tFac + ENDIF C Update linear solution vector and return to Newton iteration C Do a linesearch if necessary, and compute a new residual. C Note that it should be possible to do the following operations C at the beginning of the Newton iteration, thereby saving us from C the extra call of seaice_jfnk_update, but unfortunately that C changes the results, so we leave the stuff here for now. - CALL SEAICE_JFNK_UPDATE( - I duIce, dvIce, + CALL SEAICE_JFNK_UPDATE( + I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx duIce(I,J,bi,bj)= 0. _d 0 dvIce(I,J,bi,bj)= 0. _d 0 ENDDO @@ -281,9 +308,9 @@ ENDIF C end of Newton iterate ENDDO -C + C-- Output diagnostics -C + IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN C Count iterations totalJFNKtimeSteps = totalJFNKtimeSteps + 1 @@ -292,15 +319,15 @@ C Record failure totalKrylovFails = totalKrylovFails + krylovFails IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN - totalNewtonFails = totalNewtonFails + 1 + totalNewtonFails = totalNewtonFails + 1 ENDIF ENDIF C Decide whether it is time to dump and reset the counter writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, - & myTime+deltaTClock, deltaTClock) + & myTime+deltaTClock, deltaTClock) #ifdef ALLOW_CAL IF ( useCAL ) THEN - CALL CAL_TIME2DUMP( + CALL CAL_TIME2DUMP( I zeroRL, SEAICE_monFreq, deltaTClock, U writeNow, I myTime+deltaTclock, myIter+1, myThid ) @@ -308,49 +335,49 @@ #endif IF ( writeNow ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: time step = ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' // End JFNK statistics' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) @@ -367,7 +394,7 @@ IF ( debugLevel.GE.debLevA ) THEN IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', & myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -376,7 +403,7 @@ ENDIF IF ( krylovFails .GT. 0 ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A,I4,A,I10)') + WRITE(msgBuf,'(A,I4,A,I10)') & ' S/R SEAICE_JFNK: FGMRES did not converge ', & krylovFails, ' times in timestep ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -384,7 +411,7 @@ _END_MASTER( myThid ) ENDIF _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A,I6,A,I10)') + WRITE(msgBuf,'(A,I6,A,I10)') & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', & totalKrylovItersLoc, ' in timestep ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -400,8 +427,8 @@ C !ROUTINE: SEAICE_JFNK_UPDATE C !INTERFACE: - SUBROUTINE SEAICE_JFNK_UPDATE( - I duIce, dvIce, + SUBROUTINE SEAICE_JFNK_UPDATE( + I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) @@ -460,11 +487,11 @@ _RL resLoc, facLS LOGICAL doLineSearch C nVec :: size of the input vector(s) -C vector version of the residuals +C resTmp :: vector version of the residuals INTEGER nVec PARAMETER ( nVec = 2*sNx*sNy ) _RL resTmp (nVec,1,nSx,nSy) -C + CHARACTER*(MAX_LEN_MBUF) msgBuf CEOP @@ -474,23 +501,11 @@ facLS = 1. _d 0 doLineSearch = .TRUE. DO WHILE ( doLineSearch ) -C Determine, if we need more iterations - doLineSearch = resLoc .GE. JFNKresidual -C Limit the maximum number of iterations arbitrarily to four - doLineSearch = doLineSearch .AND. l .LE. 4 -C For the first iteration du/vIce = 0 and there will be no -C improvement of the residual possible, so we do only the first -C iteration - IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. -C Only start a linesearch after some Newton iterations - IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. -C Increment counter - l = l + 1 C Create update DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) ENDDO @@ -499,19 +514,31 @@ ENDDO C Compute current residual F(u), (includes re-computation of global C variables DWATN, zeta, and eta, i.e. they are different after this) - CALL SEAICE_CALC_RESIDUAL( - I uIce, vIce, - O uIceRes, vIceRes, + CALL SEAICE_CALC_RESIDUAL( + I uIce, vIce, + O uIceRes, vIceRes, I newtonIter, 0, myTime, myIter, myThid ) C Important: Compute the norm of the residual using the same scalar C product that SEAICE_FGMRES does CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) resLoc = SQRT(resLoc) +C Determine, if we need more iterations + doLineSearch = resLoc .GE. JFNKresidual +C Limit the maximum number of iterations arbitrarily to four + doLineSearch = doLineSearch .AND. l .LT. 4 +C For the first iteration du/vIce = 0 and there will be no +C improvement of the residual possible, so we do only the first +C iteration + IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. +C Only start a linesearch after some Newton iterations + IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. +C Increment counter + l = l + 1 C some output diagnostics IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') + WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') & ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', & 'facLS, JFNKresidual, resLoc = ', & newtonIter, l, facLS, JFNKresidual, resLoc @@ -527,7 +554,7 @@ C This is the new residual JFNKresidual = resLoc -#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ +#endif /* SEAICE_ALLOW_JFNK */ RETURN END