--- MITgcm/pkg/seaice/seaice_jfnk.F 2013/02/25 10:44:10 1.19 +++ MITgcm/pkg/seaice/seaice_jfnk.F 2013/03/02 04:35:05 1.20 @@ -1,4 +1,4 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.19 2013/02/25 10:44:10 mlosch Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.20 2013/03/02 04:35:05 jmc Exp $ C $Name: $ #include "SEAICE_OPTIONS.h" @@ -78,21 +78,19 @@ _RL phi_e, alp_e, JFNKgamma_lin _RL FGMRESeps _RL JFNKtol -C + _RL recip_deltaT LOGICAL JFNKconverged, krylovConverged LOGICAL writeNow CHARACTER*(MAX_LEN_MBUF) msgBuf -C + C u/vIceRes :: residual of sea-ice momentum equations _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) -C vector version of the residuals - _RL resTmp (nVec,1,nSx,nSy) C du/vIce :: ice velocity increment to be added to u/vIce _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) -C precomputed (= constant per Newton iteration) versions of +C precomputed (= constant per Newton iteration) versions of C zeta, eta, and DWATN, press _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) @@ -117,11 +115,10 @@ & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) & iOutFGMRES=1 -C DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx uIceRes(I,J,bi,bj) = 0. _d 0 vIceRes(I,J,bi,bj) = 0. _d 0 duIce (I,J,bi,bj) = 0. _d 0 @@ -131,14 +128,14 @@ ENDDO ENDDO C Compute things that do no change during the Newton iteration: -C sea-surface tilt and wind stress: +C sea-surface tilt and wind stress: C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) - & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT + & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) - & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT + & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT ENDDO ENDDO ENDDO @@ -149,8 +146,8 @@ newtonIter = newtonIter + 1 C Compute initial residual F(u), (includes computation of global C variables DWATN, zeta, and eta) - IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( - I duIce, dvIce, + IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( + I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) @@ -158,8 +155,8 @@ C constant for the preconditioner DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO j=1-Oly,sNy+Oly - DO i=1-Olx,sNx+Olx + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) etaPre(I,J,bi,bj) = eta(I,J,bi,bj) etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) @@ -172,7 +169,7 @@ JFNKgamma_lin = JFNKgamma_lin_max IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter & .AND.JFNKresidual.LT.JFNKres_t ) THEN -C Eisenstat, 1996, equ.(2.6) +C Eisenstat, 1996, equ.(2.6) phi_e = 1. _d 0 alp_e = 1. _d 0 JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e @@ -181,7 +178,7 @@ ENDIF C save the residual for the next iteration JFNKresidualKm1 = JFNKresidual -C + C The Krylov iteration using FGMRES, the preconditioner is LSOR C for now. The code is adapted from SEAICE_LSR, but heavily stripped C down. @@ -189,24 +186,24 @@ C in that routine krylovIter = 0 iCode = 0 -C + JFNKconverged = JFNKresidual.LT.JFNKtol -C + C do Krylov loop only if convergence is not reached -C + IF ( .NOT.JFNKconverged ) THEN -C + C start Krylov iteration (FGMRES) -C + krylovConverged = .FALSE. FGMRESeps = JFNKgamma_lin * JFNKresidual - DO WHILE ( .NOT.krylovConverged ) + DO WHILE ( .NOT.krylovConverged ) C solution vector sol = du/vIce C residual vector (rhs) Fu = u/vIceRes -C output work vectors wk1, -> input work vector wk2 -C +C output work vectors wk1, -> input work vector wk2 + CALL SEAICE_FGMRES_DRIVER( - I uIceRes, vIceRes, + I uIceRes, vIceRes, U duIce, dvIce, iCode, I FGMRESeps, iOutFGMRES, I newtonIter, krylovIter, myTime, myIter, myThid ) @@ -214,17 +211,17 @@ C or product of matrix (Jacobian) times vector. For iCode = 0, terminate C iteration IF (iCode.EQ.1) THEN -C Call preconditioner +C Call preconditioner IF ( SOLV_MAX_ITERS .GT. 0 ) - & CALL SEAICE_PRECONDITIONER( - U duIce, dvIce, - I zetaPre, etaPre, etaZpre, dwatPre, + & CALL SEAICE_PRECONDITIONER( + U duIce, dvIce, + I zetaPre, etaPre, etaZpre, dwatPre, I newtonIter, krylovIter, myTime, myIter, myThid ) ELSEIF (iCode.GE.2) THEN C Compute Jacobian times vector CALL SEAICE_JACVEC( I uIce, vIce, uIceRes, vIceRes, - U duIce, dvIce, + U duIce, dvIce, I newtonIter, krylovIter, myTime, myIter, myThid ) ENDIF krylovConverged = iCode.EQ.0 @@ -234,9 +231,9 @@ C some output diagnostics IF ( debugLevel.GE.debLevA ) THEN _BEGIN_MASTER( myThid ) - totalNewtonItersLoc = + totalNewtonItersLoc = & SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter - WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') + WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') & ' S/R SEAICE_JFNK: Newton iterate / total, ', & 'JFNKgamma_lin, initial norm = ', & newtonIter, totalNewtonItersLoc, @@ -244,7 +241,7 @@ CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(3(A,I6))') - & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, + & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, & ' / ', totalNewtonItersLoc, & ', Nb. of FGMRES iterations = ', krylovIter CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -267,16 +264,16 @@ C at the beginning of the Newton iteration, thereby saving us from C the extra call of seaice_jfnk_update, but unfortunately that C changes the results, so we leave the stuff here for now. - CALL SEAICE_JFNK_UPDATE( - I duIce, dvIce, + CALL SEAICE_JFNK_UPDATE( + I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx duIce(I,J,bi,bj)= 0. _d 0 dvIce(I,J,bi,bj)= 0. _d 0 ENDDO @@ -286,9 +283,9 @@ ENDIF C end of Newton iterate ENDDO -C + C-- Output diagnostics -C + IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN C Count iterations totalJFNKtimeSteps = totalJFNKtimeSteps + 1 @@ -297,15 +294,15 @@ C Record failure totalKrylovFails = totalKrylovFails + krylovFails IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN - totalNewtonFails = totalNewtonFails + 1 + totalNewtonFails = totalNewtonFails + 1 ENDIF ENDIF C Decide whether it is time to dump and reset the counter writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, - & myTime+deltaTClock, deltaTClock) + & myTime+deltaTClock, deltaTClock) #ifdef ALLOW_CAL IF ( useCAL ) THEN - CALL CAL_TIME2DUMP( + CALL CAL_TIME2DUMP( I zeroRL, SEAICE_monFreq, deltaTClock, U writeNow, I myTime+deltaTclock, myIter+1, myThid ) @@ -313,49 +310,49 @@ #endif IF ( writeNow ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: time step = ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' // End JFNK statistics' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) - WRITE(msgBuf,'(A)') + WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) @@ -372,7 +369,7 @@ IF ( debugLevel.GE.debLevA ) THEN IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A,I10)') + WRITE(msgBuf,'(A,I10)') & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', & myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -381,7 +378,7 @@ ENDIF IF ( krylovFails .GT. 0 ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A,I4,A,I10)') + WRITE(msgBuf,'(A,I4,A,I10)') & ' S/R SEAICE_JFNK: FGMRES did not converge ', & krylovFails, ' times in timestep ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -389,7 +386,7 @@ _END_MASTER( myThid ) ENDIF _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(A,I6,A,I10)') + WRITE(msgBuf,'(A,I6,A,I10)') & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', & totalKrylovItersLoc, ' in timestep ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, @@ -405,8 +402,8 @@ C !ROUTINE: SEAICE_JFNK_UPDATE C !INTERFACE: - SUBROUTINE SEAICE_JFNK_UPDATE( - I duIce, dvIce, + SUBROUTINE SEAICE_JFNK_UPDATE( + I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) @@ -465,11 +462,11 @@ _RL resLoc, facLS LOGICAL doLineSearch C nVec :: size of the input vector(s) -C vector version of the residuals +C resTmp :: vector version of the residuals INTEGER nVec PARAMETER ( nVec = 2*sNx*sNy ) _RL resTmp (nVec,1,nSx,nSy) -C + CHARACTER*(MAX_LEN_MBUF) msgBuf CEOP @@ -482,8 +479,8 @@ C Create update DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) - DO J=1-Oly,sNy+Oly - DO I=1-Olx,sNx+Olx + DO J=1-OLy,sNy+OLy + DO I=1-OLx,sNx+OLx uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) ENDDO @@ -492,9 +489,9 @@ ENDDO C Compute current residual F(u), (includes re-computation of global C variables DWATN, zeta, and eta, i.e. they are different after this) - CALL SEAICE_CALC_RESIDUAL( - I uIce, vIce, - O uIceRes, vIceRes, + CALL SEAICE_CALC_RESIDUAL( + I uIce, vIce, + O uIceRes, vIceRes, I newtonIter, 0, myTime, myIter, myThid ) C Important: Compute the norm of the residual using the same scalar C product that SEAICE_FGMRES does @@ -502,9 +499,9 @@ CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) resLoc = SQRT(resLoc) C Determine, if we need more iterations - doLineSearch = resLoc .GE. JFNKresidual + doLineSearch = resLoc .GE. JFNKresidual C Limit the maximum number of iterations arbitrarily to four - doLineSearch = doLineSearch .AND. l .LT. 4 + doLineSearch = doLineSearch .AND. l .LT. 4 C For the first iteration du/vIce = 0 and there will be no C improvement of the residual possible, so we do only the first C iteration @@ -516,7 +513,7 @@ C some output diagnostics IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN _BEGIN_MASTER( myThid ) - WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') + WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') & ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', & 'facLS, JFNKresidual, resLoc = ', & newtonIter, l, facLS, JFNKresidual, resLoc