/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Contents of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (show annotations) (download)
Mon Dec 17 15:06:02 2012 UTC (12 years, 7 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint64b
Changes since 1.12: +21 -40 lines
  - add a metric based on grid cell area to SEAICE_SCALPROD

1 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.12 2012/12/17 10:08:16 mlosch Exp $
2 C $Name: $
3
4 #include "SEAICE_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: SEAICE_JFNK
8 C !INTERFACE:
9 SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
10
11 C !DESCRIPTION: \bv
12 C *==========================================================*
13 C | SUBROUTINE SEAICE_JFKF
14 C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
15 C | following J.-F. Lemieux et al. Improving the numerical
16 C | convergence of viscous-plastic sea ice models with the
17 C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
18 C | 2840-2852 (2010).
19 C | o The logic follows JFs code.
20 C *==========================================================*
21 C | written by Martin Losch, Oct 2012
22 C *==========================================================*
23 C \ev
24
25 C !USES:
26 IMPLICIT NONE
27
28 C === Global variables ===
29 #include "SIZE.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "DYNVARS.h"
33 #include "GRID.h"
34 #include "SEAICE_SIZE.h"
35 #include "SEAICE_PARAMS.h"
36 #include "SEAICE.h"
37
38 #ifdef ALLOW_AUTODIFF_TAMC
39 # include "tamc.h"
40 #endif
41
42 C !INPUT/OUTPUT PARAMETERS:
43 C === Routine arguments ===
44 C myTime :: Simulation time
45 C myIter :: Simulation timestep number
46 C myThid :: my Thread Id. number
47 _RL myTime
48 INTEGER myIter
49 INTEGER myThid
50
51 #if ( (defined SEAICE_CGRID) && \
52 (defined SEAICE_ALLOW_JFNK) && \
53 (defined SEAICE_ALLOW_DYNAMICS) )
54 C !FUNCTIONS:
55 LOGICAL DIFFERENT_MULTIPLE
56 EXTERNAL DIFFERENT_MULTIPLE
57
58 C i,j,bi,bj :: loop indices
59 INTEGER i,j,bi,bj
60 C loop indices
61 INTEGER newtonIter
62 INTEGER krylovIter, krylovFails
63 INTEGER totalKrylovItersLoc, totalNewtonItersLoc
64 C FGMRES flag that determines amount of output messages of fgmres
65 INTEGER iOutFGMRES
66 C FGMRES flag that indicates what fgmres wants us to do next
67 INTEGER iCode
68 _RL JFNKresidual
69 _RL JFNKresidualKm1
70 C parameters to compute convergence criterion
71 _RL phi_e, alp_e, JFNKgamma_lin
72 _RL FGMRESeps
73 _RL JFNKtol
74 C
75 _RL recip_deltaT
76 LOGICAL JFNKconverged, krylovConverged
77 LOGICAL writeNow
78 CHARACTER*(MAX_LEN_MBUF) msgBuf
79 C
80 C u/vIceRes :: residual of sea-ice momentum equations
81 _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
82 _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
83 C du/vIce :: ice velocity increment to be added to u/vIce
84 _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
85 _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
86 C precomputed (= constant per Newton iteration) versions of
87 C zeta, eta, and DWATN, press
88 _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
89 _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
90 _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
91 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
92 CEOP
93 INTEGER n
94 _RL resTmp (nVec,1,nSx,nSy)
95
96 C Initialise
97 newtonIter = 0
98 krylovFails = 0
99 totalKrylovItersLoc = 0
100 JFNKconverged = .FALSE.
101 JFNKtol = 0. _d 0
102 JFNKresidual = 0. _d 0
103 JFNKresidualKm1 = 0. _d 0
104 FGMRESeps = 0. _d 0
105 recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
106
107 iOutFGMRES=0
108 C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
109 IF ( debugLevel.GE.debLevC .AND.
110 & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
111 & iOutFGMRES=1
112
113 C
114 DO bj=myByLo(myThid),myByHi(myThid)
115 DO bi=myBxLo(myThid),myBxHi(myThid)
116 DO J=1-Oly,sNy+Oly
117 DO I=1-Olx,sNx+Olx
118 uIceRes(I,J,bi,bj) = 0. _d 0
119 vIceRes(I,J,bi,bj) = 0. _d 0
120 duIce (I,J,bi,bj) = 0. _d 0
121 dvIce (I,J,bi,bj) = 0. _d 0
122 uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
123 vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
124 ENDDO
125 ENDDO
126 C Compute things that do no change during the Newton iteration:
127 C sea-surface tilt and wind stress:
128 C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT
129 DO J=1-Oly,sNy+Oly
130 DO I=1-Olx,sNx+Olx
131 FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
132 & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT
133 FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
134 & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT
135 ENDDO
136 ENDDO
137 ENDDO
138 ENDDO
139 C Start nonlinear Newton iteration: outer loop iteration
140 DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.
141 & .NOT.JFNKconverged )
142 newtonIter = newtonIter + 1
143 C Compute initial residual F(u), (includes computation of global
144 C variables DWATN, zeta, and eta)
145 CALL SEAICE_CALC_RESIDUAL(
146 I uIce, vIce,
147 O uIceRes, vIceRes,
148 I newtonIter, 0, myTime, myIter, myThid )
149 C probably not necessary, will be removed later:
150 CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)
151 C local copies of precomputed coefficients that are to stay
152 C constant for the preconditioner
153 DO bj=myByLo(myThid),myByHi(myThid)
154 DO bi=myBxLo(myThid),myBxHi(myThid)
155 DO j=1-Oly,sNy+Oly
156 DO i=1-Olx,sNx+Olx
157 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
158 etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
159 etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj)
160 dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
161 ENDDO
162 ENDDO
163 ENDDO
164 ENDDO
165 C Important: Compute the norm of the residual using the same scalar
166 C product that SEAICE_FGMRES does
167 CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
168 CALL SEAICE_SCALPROD(
169 & nVec,1,1,1,resTmp,resTmp,JFNKresidual,myThid)
170 JFNKresidual = SQRT(JFNKresidual)
171 C compute convergence criterion for linear preconditioned FGMRES
172 JFNKgamma_lin = JFNKgamma_lin_max
173 IF ( newtonIter.GT.1.AND.newtonIter.LE.100
174 & .AND.JFNKresidual.LT.JFNKres_t ) THEN
175 C Eisenstat, 1996, equ.(2.6)
176 phi_e = 1. _d 0
177 alp_e = 1. _d 0
178 JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e
179 JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
180 JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
181 ENDIF
182 C save the residual for the next iteration
183 JFNKresidualKm1 = JFNKresidual
184 C
185 C The Krylov iteration using FGMRES, the preconditioner is LSOR
186 C for now. The code is adapted from SEAICE_LSR, but heavily stripped
187 C down.
188 C krylovIter is mapped into "its" in seaice_fgmres and is incremented
189 C in that routine
190 krylovIter = 0
191 iCode = 0
192 C
193 JFNKconverged = JFNKresidual.LT.JFNKtol
194 C
195 C do Krylov loop only if convergence is not reached
196 C
197 IF ( .NOT.JFNKconverged ) THEN
198 C
199 C start Krylov iteration (FGMRES)
200 C
201 krylovConverged = .FALSE.
202 FGMRESeps = JFNKgamma_lin * JFNKresidual
203 DO WHILE ( .NOT.krylovConverged )
204 C solution vector sol = du/vIce
205 C residual vector (rhs) Fu = u/vIceRes
206 C output work vectors wk1, -> input work vector wk2
207 C
208 CALL SEAICE_FGMRES_DRIVER(
209 I uIceRes, vIceRes,
210 U duIce, dvIce, iCode,
211 I FGMRESeps, iOutFGMRES,
212 I newtonIter, krylovIter, myTime, myIter, myThid )
213 C FGMRES returns iCode either asking for an new preconditioned vector
214 C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
215 C iteration
216 IF (iCode.EQ.1) THEN
217 C Call preconditioner
218 IF ( SOLV_MAX_ITERS .GT. 0 )
219 & CALL SEAICE_PRECONDITIONER(
220 U duIce, dvIce,
221 I zetaPre, etaPre, etaZpre, dwatPre,
222 I newtonIter, krylovIter, myTime, myIter, myThid )
223 ELSEIF (iCode.GE.2) THEN
224 C Compute Jacobian times vector
225 CALL SEAICE_JACVEC(
226 I uIce, vIce, uIceRes, vIceRes,
227 U duIce, dvIce,
228 I newtonIter, krylovIter, myTime, myIter, myThid )
229 ENDIF
230 krylovConverged = iCode.EQ.0
231 C End of Krylov iterate
232 ENDDO
233 totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
234 C some output diagnostics
235 IF ( debugLevel.GE.debLevA ) THEN
236 _BEGIN_MASTER( myThid )
237 totalNewtonItersLoc =
238 & SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter
239 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
240 & ' S/R SEAICE_JFNK: Newton iterate / total, ',
241 & 'JFNKgamma_lin, initial norm = ',
242 & newtonIter, totalNewtonItersLoc,
243 & JFNKgamma_lin,JFNKresidual
244 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
245 & SQUEEZE_RIGHT, myThid )
246 WRITE(msgBuf,'(3(A,I6))')
247 & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
248 & ' / ', totalNewtonItersLoc,
249 & ', Nb. of FGMRES iterations = ', krylovIter
250 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
251 & SQUEEZE_RIGHT, myThid )
252 _END_MASTER( myThid )
253 ENDIF
254 IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
255 krylovFails = krylovFails + 1
256 ENDIF
257 C Update linear solution vector and return to Newton iteration
258 DO bj=myByLo(myThid),myByHi(myThid)
259 DO bi=myBxLo(myThid),myBxHi(myThid)
260 DO J=1-Oly,sNy+Oly
261 DO I=1-Olx,sNx+Olx
262 uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)
263 vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)
264 C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
265 duIce(I,J,bi,bj)= 0. _d 0
266 dvIce(I,J,bi,bj)= 0. _d 0
267 ENDDO
268 ENDDO
269 ENDDO
270 ENDDO
271 C Set the stopping criterion for the Newton iteration
272 IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual
273 ENDIF
274 C end of Newton iterate
275 ENDDO
276 C
277 C-- Output diagnostics
278 C
279 IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
280 C Count iterations
281 totalJFNKtimeSteps = totalJFNKtimeSteps + 1
282 totalNewtonIters = totalNewtonIters + newtonIter
283 totalKrylovIters = totalKrylovIters + totalKrylovItersLoc
284 C Record failure
285 totalKrylovFails = totalKrylovFails + krylovFails
286 IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
287 totalNewtonFails = totalNewtonFails + 1
288 ENDIF
289 ENDIF
290 C Decide whether it is time to dump and reset the counter
291 writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
292 & myTime+deltaTClock, deltaTClock)
293 #ifdef ALLOW_CAL
294 IF ( useCAL ) THEN
295 CALL CAL_TIME2DUMP(
296 I zeroRL, SEAICE_monFreq, deltaTClock,
297 U writeNow,
298 I myTime+deltaTclock, myIter+1, myThid )
299 ENDIF
300 #endif
301 IF ( writeNow ) THEN
302 _BEGIN_MASTER( myThid )
303 WRITE(msgBuf,'(A)')
304 &' // ======================================================='
305 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
306 & SQUEEZE_RIGHT, myThid )
307 WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
308 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
309 & SQUEEZE_RIGHT, myThid )
310 WRITE(msgBuf,'(A)')
311 &' // ======================================================='
312 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
313 & SQUEEZE_RIGHT, myThid )
314 WRITE(msgBuf,'(A,I10)')
315 & ' %JFNK_MON: time step = ', myIter+1
316 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
317 & SQUEEZE_RIGHT, myThid )
318 WRITE(msgBuf,'(A,I10)')
319 & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps
320 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
321 & SQUEEZE_RIGHT, myThid )
322 WRITE(msgBuf,'(A,I10)')
323 & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters
324 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
325 & SQUEEZE_RIGHT, myThid )
326 WRITE(msgBuf,'(A,I10)')
327 & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters
328 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
329 & SQUEEZE_RIGHT, myThid )
330 WRITE(msgBuf,'(A,I10)')
331 & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
332 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
333 & SQUEEZE_RIGHT, myThid )
334 WRITE(msgBuf,'(A,I10)')
335 & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
336 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
337 & SQUEEZE_RIGHT, myThid )
338 WRITE(msgBuf,'(A)')
339 &' // ======================================================='
340 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
341 & SQUEEZE_RIGHT, myThid )
342 WRITE(msgBuf,'(A)') ' // End JFNK statistics'
343 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
344 & SQUEEZE_RIGHT, myThid )
345 WRITE(msgBuf,'(A)')
346 &' // ======================================================='
347 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
348 & SQUEEZE_RIGHT, myThid )
349 _END_MASTER( myThid )
350 C reset and start again
351 totalJFNKtimeSteps = 0
352 totalNewtonIters = 0
353 totalKrylovIters = 0
354 totalKrylovFails = 0
355 totalNewtonFails = 0
356 ENDIF
357
358 C Print more debugging information
359 IF ( debugLevel.GE.debLevA ) THEN
360 IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
361 _BEGIN_MASTER( myThid )
362 WRITE(msgBuf,'(A,I10)')
363 & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
364 & myIter+1
365 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
366 & SQUEEZE_RIGHT, myThid )
367 _END_MASTER( myThid )
368 ENDIF
369 IF ( krylovFails .GT. 0 ) THEN
370 _BEGIN_MASTER( myThid )
371 WRITE(msgBuf,'(A,I4,A,I10)')
372 & ' S/R SEAICE_JFNK: FGMRES did not converge ',
373 & krylovFails, ' times in timestep ', myIter+1
374 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
375 & SQUEEZE_RIGHT, myThid )
376 _END_MASTER( myThid )
377 ENDIF
378 _BEGIN_MASTER( myThid )
379 WRITE(msgBuf,'(A,I6,A,I10)')
380 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
381 & totalKrylovItersLoc, ' in timestep ', myIter+1
382 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
383 & SQUEEZE_RIGHT, myThid )
384 _END_MASTER( myThid )
385 ENDIF
386
387 #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */
388
389 RETURN
390 END

  ViewVC Help
Powered by ViewVC 1.1.22