78 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
79 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
80 |
C precomputed (= constant per Newton iteration) versions of |
C precomputed (= constant per Newton iteration) versions of |
81 |
C zeta, eta, and DWATN |
C zeta, eta, and DWATN, press |
82 |
_RL zetaPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
83 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
84 |
_RL dwatPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
85 |
|
_RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
86 |
CEOP |
CEOP |
87 |
|
|
88 |
C Initialise |
C Initialise |
138 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
139 |
DO j=1-Oly,sNy+Oly |
DO j=1-Oly,sNy+Oly |
140 |
DO i=1-Olx,sNx+Olx |
DO i=1-Olx,sNx+Olx |
141 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
142 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
143 |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
144 |
|
pressPre(I,J,bi,bj) = press(I,J,bi,bj) |
145 |
ENDDO |
ENDDO |
146 |
ENDDO |
ENDDO |
147 |
ENDDO |
ENDDO |
231 |
C Call preconditioner |
C Call preconditioner |
232 |
CALL SEAICE_PRECONDITIONER( |
CALL SEAICE_PRECONDITIONER( |
233 |
U duIce, dvIce, |
U duIce, dvIce, |
234 |
I zetaPre, etaPre, dwatPre, |
I zetaPre, etaPre, dwatPre, pressPre, |
235 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
236 |
ELSEIF (iCode.GE.2) THEN |
ELSEIF (iCode.GE.2) THEN |
237 |
C Compute Jacobian times vector |
C Compute Jacobian times vector |