/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Contents of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Wed Nov 7 09:56:23 2012 UTC (12 years, 8 months ago) by mlosch
Branch: MAIN
Changes since 1.4: +118 -29 lines
- move control over output-messages by fgmres to seaice_jfnk to save
  some operations
- improve I/O of diagnostics of JFNK in seaice_jfnk.F:
    + add (SEAICE.h) and rename some counters (initiliased in
      seaice_init_fixed.F)
    + add _BEGIN/END_MASTER (myThid)  around print statements
    + print total number of iterations and failures over SEAICE_monFreq
      interval to STDOUT

1 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.4 2012/11/06 13:18:14 mlosch Exp $
2 C $Name: $
3
4 #include "SEAICE_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: SEAICE_JFNK
8 C !INTERFACE:
9 SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
10
11 C !DESCRIPTION: \bv
12 C *==========================================================*
13 C | SUBROUTINE SEAICE_JFKF
14 C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
15 C | following J.-F. Lemieux et al. Improving the numerical
16 C | convergence of viscous-plastic sea ice models with the
17 C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
18 C | 2840-2852 (2010).
19 C | o The logic follows JFs code.
20 C *==========================================================*
21 C | written by Martin Losch, Oct 2012
22 C *==========================================================*
23 C \ev
24
25 C !USES:
26 IMPLICIT NONE
27
28 C === Global variables ===
29 #include "SIZE.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "DYNVARS.h"
33 #include "GRID.h"
34 #include "SEAICE_SIZE.h"
35 #include "SEAICE_PARAMS.h"
36 #include "SEAICE.h"
37
38 #ifdef ALLOW_AUTODIFF_TAMC
39 # include "tamc.h"
40 #endif
41
42 C !INPUT/OUTPUT PARAMETERS:
43 C === Routine arguments ===
44 C myTime :: Simulation time
45 C myIter :: Simulation timestep number
46 C myThid :: my Thread Id. number
47 _RL myTime
48 INTEGER myIter
49 INTEGER myThid
50
51 #if ( (defined SEAICE_CGRID) && \
52 (defined SEAICE_ALLOW_JFNK) && \
53 (defined SEAICE_ALLOW_DYNAMICS) )
54 C !FUNCTIONS:
55 LOGICAL DIFFERENT_MULTIPLE
56 EXTERNAL DIFFERENT_MULTIPLE
57
58 C i,j,bi,bj :: loop indices
59 INTEGER i,j,bi,bj
60 C loop indices
61 INTEGER newtonIter
62 INTEGER krylovIter, krylovFails
63 INTEGER totalKrylovItersLoc
64 C FGMRES flag that determines amount of output messages of fgmres
65 INTEGER iOutFGMRES
66 C FGMRES flag that indicates what fgmres wants us to do next
67 INTEGER iCode
68 _RL JFNKresidual, JFNKresidualTile(nSx,nSy)
69 _RL JFNKresidualKm1
70 C parameters to compute convergence criterion
71 _RL phi_e, alp_e, JFNKgamma_lin
72 _RL FGMRESeps
73 _RL JFNKtol
74 C
75 _RL recip_deltaT
76 LOGICAL JFNKconverged, krylovConverged
77 CHARACTER*(MAX_LEN_MBUF) msgBuf
78 C
79 C u/vIceRes :: residual of sea-ice momentum equations
80 _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
81 _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
82 C du/vIce :: ice velocity increment to be added to u/vIce
83 _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
84 _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
85 C precomputed (= constant per Newton iteration) versions of
86 C zeta, eta, and DWATN, press
87 _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
88 _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
89 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
90 _RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
91 CEOP
92
93 C Initialise
94 newtonIter = 0
95 krylovFails = 0
96 totalKrylovItersLoc = 0
97 JFNKconverged = .FALSE.
98 JFNKtol = 0. _d 0
99 JFNKresidual = 0. _d 0
100 JFNKresidualKm1 = 0. _d 0
101 FGMRESeps = 0. _d 0
102 recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
103
104 iOutFGMRES=0
105 C iOutFgmres=1 gives a little bit of output
106 IF ( debugLevel.GE.debLevA .AND.
107 & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
108 & iOutFGMRES=1
109
110 C
111 DO bj=myByLo(myThid),myByHi(myThid)
112 DO bi=myBxLo(myThid),myBxHi(myThid)
113 DO J=1-Oly,sNy+Oly
114 DO I=1-Olx,sNx+Olx
115 uIceRes(I,J,bi,bj) = 0. _d 0
116 vIceRes(I,J,bi,bj) = 0. _d 0
117 duIce (I,J,bi,bj) = 0. _d 0
118 dvIce (I,J,bi,bj) = 0. _d 0
119 uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
120 vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
121 ENDDO
122 ENDDO
123 C Compute things that do no change during the Newton iteration:
124 C sea-surface tilt and wind stress:
125 C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT
126 DO J=1-Oly,sNy+Oly
127 DO I=1-Olx,sNx+Olx
128 FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
129 & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT
130 FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
131 & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT
132 ENDDO
133 ENDDO
134 ENDDO
135 ENDDO
136 C Start nonlinear Newton iteration: outer loop iteration
137 DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.
138 & .NOT.JFNKconverged )
139 newtonIter = newtonIter + 1
140 C Compute initial residual F(u), (includes computation of global
141 C variables DWATN, zeta, and eta)
142 CALL SEAICE_CALC_RESIDUAL(
143 I uIce, vIce,
144 O uIceRes, vIceRes,
145 I newtonIter, 0, myTime, myIter, myThid )
146 CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)
147 C local copies of precomputed coefficients that are to stay
148 C constant for the preconditioner
149 DO bj=myByLo(myThid),myByHi(myThid)
150 DO bi=myBxLo(myThid),myBxHi(myThid)
151 DO j=1-Oly,sNy+Oly
152 DO i=1-Olx,sNx+Olx
153 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
154 etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
155 dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
156 pressPre(I,J,bi,bj) = press(I,J,bi,bj)
157 ENDDO
158 ENDDO
159 ENDDO
160 ENDDO
161 C
162 DO bj=myByLo(myThid),myByHi(myThid)
163 DO bi=myBxLo(myThid),myBxHi(myThid)
164 JFNKresidualTile(bi,bj) = 0. _d 0
165 DO J=1,sNy
166 DO I=1,sNx
167 #ifdef CG2D_SINGLECPU_SUM
168 JFNKlocalBuf(I,J,bi,bj) =
169 #else
170 JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +
171 #endif
172 & uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +
173 & vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)
174 ENDDO
175 ENDDO
176 ENDDO
177 ENDDO
178 JFNKresidual = 0. _d 0
179 #ifdef CG2D_SINGLECPU_SUM
180 CALL GLOBAL_SUM_SINGLECPU_RL(
181 & JFNKlocalBuf,JFNKresidual, 0, 0, myThid)
182 #else
183 CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )
184 #endif
185 JFNKresidual = SQRT(JFNKresidual)
186 C compute convergence criterion for linear preconditioned FGMRES
187 JFNKgamma_lin = JFNKgamma_lin_max
188 IF ( newtonIter.GT.1.AND.newtonIter.LE.100
189 & .AND.JFNKresidual.LT.JFNKres_t ) THEN
190 C Eisenstat, 1996, equ.(2.6)
191 phi_e = 1. _d 0
192 alp_e = 1. _d 0
193 JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e
194 JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
195 JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
196 ENDIF
197 C save the residual for the next iteration
198 JFNKresidualKm1 = JFNKresidual
199 C
200 C The Krylov iteration using FGMRES, the preconditioner is LSOR
201 C for now. The code is adapted from SEAICE_LSR, but heavily stripped
202 C down.
203 C krylovIter is mapped into "its" in seaice_fgmres and is incremented
204 C in that routine
205 krylovIter = 0
206 iCode = 0
207 IF ( debugLevel.GE.debLevA ) THEN
208 _BEGIN_MASTER( myThid )
209 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
210 & ' S/R SEAICE_JFNK: newtonIter,',
211 & ' total newtonIter, JFNKgamma_lin, initial norm = ',
212 & newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
213 & JFNKgamma_lin, JFNKresidual
214 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
215 & SQUEEZE_RIGHT, myThid )
216 _END_MASTER( myThid )
217 ENDIF
218 C
219 JFNKconverged = JFNKresidual.LT.JFNKtol
220 C
221 C do Krylov loop only if convergence is not reached
222 C
223 IF ( .NOT.JFNKconverged ) THEN
224 C
225 C start Krylov iteration (FGMRES)
226 C
227 krylovConverged = .FALSE.
228 FGMRESeps = JFNKgamma_lin * JFNKresidual
229 DO WHILE ( .NOT.krylovConverged )
230 C solution vector sol = du/vIce
231 C residual vector (rhs) Fu = u/vIceRes
232 C output work vectors wk1, -> input work vector wk2
233 C
234 CALL SEAICE_FGMRES_DRIVER(
235 I uIceRes, vIceRes,
236 U duIce, dvIce, iCode,
237 I FGMRESeps, iOutFGMRES,
238 I newtonIter, krylovIter, myTime, myIter, myThid )
239 C FGMRES returns iCode either asking for an new preconditioned vector
240 C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
241 C iteration
242 IF (iCode.EQ.1) THEN
243 C Call preconditioner
244 CALL SEAICE_PRECONDITIONER(
245 U duIce, dvIce,
246 I zetaPre, etaPre, dwatPre, pressPre,
247 I newtonIter, krylovIter, myTime, myIter, myThid )
248 ELSEIF (iCode.GE.2) THEN
249 C Compute Jacobian times vector
250 CALL SEAICE_JACVEC(
251 I uIce, vIce, uIceRes, vIceRes,
252 U duIce, dvIce,
253 I newtonIter, krylovIter, myTime, myIter, myThid )
254 ENDIF
255 krylovConverged = iCode.EQ.0
256 C End of Krylov iterate
257 ENDDO
258 totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
259 C some output diagnostics
260 IF ( debugLevel.GE.debLevA ) THEN
261 _BEGIN_MASTER( myThid )
262 WRITE(msgBuf,'(3(A,I6))')
263 & ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,
264 & ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
265 & ', Nb. of FGMRES iterations = ', krylovIter
266 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
267 & SQUEEZE_RIGHT, myThid )
268 _END_MASTER( myThid )
269 ENDIF
270 IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
271 krylovFails = krylovFails + 1
272 ENDIF
273 C Update linear solution vector and return to Newton iteration
274 DO bj=myByLo(myThid),myByHi(myThid)
275 DO bi=myBxLo(myThid),myBxHi(myThid)
276 DO J=1-Oly,sNy+Oly
277 DO I=1-Olx,sNx+Olx
278 uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)
279 vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)
280 C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
281 duIce(I,J,bi,bj)= 0. _d 0
282 dvIce(I,J,bi,bj)= 0. _d 0
283 ENDDO
284 ENDDO
285 ENDDO
286 ENDDO
287 C Set the stopping criterion for the Newton iteration
288 IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual
289 ENDIF
290 C end of Newton iterate
291 ENDDO
292 C
293 C-- Output diagnostics
294 C
295 C Count iterations
296 totalJFNKtimeSteps = totalJFNKtimeSteps + 1
297 totalNewtonIters = totalNewtonIters + newtonIter
298 totalKrylovIters = totalKrylovIters + totalKrylovItersLoc
299 C Record failure
300 totalKrylovFails = totalKrylovFails + krylovFails
301 IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
302 totalNewtonFails = totalNewtonFails + 1
303 ENDIF
304 C Decide whether it is time to dump and reset the counter
305 IF ( DIFFERENT_MULTIPLE(SEAICE_monFreq,myTime+deltaTClock,
306 & deltaTClock) ) THEN
307 _BEGIN_MASTER( myThid )
308 WRITE(msgBuf,'(A)')
309 &' // ======================================================='
310 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
311 & SQUEEZE_RIGHT, myThid )
312 WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
313 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
314 & SQUEEZE_RIGHT, myThid )
315 WRITE(msgBuf,'(A)')
316 &' // ======================================================='
317 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
318 & SQUEEZE_RIGHT, myThid )
319 WRITE(msgBuf,'(A,I10)')
320 & ' %JFNK_MON: time step = ', myIter+1
321 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
322 & SQUEEZE_RIGHT, myThid )
323 WRITE(msgBuf,'(A,I10)')
324 & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps
325 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
326 & SQUEEZE_RIGHT, myThid )
327 WRITE(msgBuf,'(A,I10)')
328 & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters
329 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
330 & SQUEEZE_RIGHT, myThid )
331 WRITE(msgBuf,'(A,I10)')
332 & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters
333 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
334 & SQUEEZE_RIGHT, myThid )
335 WRITE(msgBuf,'(A,I10)')
336 & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
337 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
338 & SQUEEZE_RIGHT, myThid )
339 WRITE(msgBuf,'(A,I10)')
340 & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
341 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
342 & SQUEEZE_RIGHT, myThid )
343 WRITE(msgBuf,'(A)')
344 &' // ======================================================='
345 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
346 & SQUEEZE_RIGHT, myThid )
347 WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
348 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
349 & SQUEEZE_RIGHT, myThid )
350 WRITE(msgBuf,'(A)')
351 &' // ======================================================='
352 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
353 & SQUEEZE_RIGHT, myThid )
354 _END_MASTER( myThid )
355 C reset and start again
356 totalJFNKtimeSteps = 0
357 totalNewtonIters = 0
358 totalKrylovIters = 0
359 totalKrylovFails = 0
360 totalNewtonFails = 0
361 ENDIF
362
363 C Print more debugging information
364 IF ( debugLevel.GE.debLevA ) THEN
365 IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
366 _BEGIN_MASTER( myThid )
367 WRITE(msgBuf,'(A,I10)')
368 & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
369 & myIter+1
370 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
371 & SQUEEZE_RIGHT, myThid )
372 _END_MASTER( myThid )
373 ENDIF
374 IF ( krylovFails .GT. 0 ) THEN
375 _BEGIN_MASTER( myThid )
376 WRITE(msgBuf,'(A,I4,A,I10)')
377 & ' S/R SEAICE_JFNK: FGMRES did not converge ',
378 & krylovFails, ' times in timestep ', myIter+1
379 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
380 & SQUEEZE_RIGHT, myThid )
381 _END_MASTER( myThid )
382 ENDIF
383 _BEGIN_MASTER( myThid )
384 WRITE(msgBuf,'(A,I6,A,I10)')
385 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
386 & totalKrylovItersLoc, ' in timestep ', myIter+1
387 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
388 & SQUEEZE_RIGHT, myThid )
389 _END_MASTER( myThid )
390 ENDIF
391
392 #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */
393
394 RETURN
395 END

  ViewVC Help
Powered by ViewVC 1.1.22