1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.3 2012/11/06 12:53:14 mlosch Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
C !ROUTINE: SEAICE_JFNK |
8 |
C !INTERFACE: |
9 |
SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid ) |
10 |
|
11 |
C !DESCRIPTION: \bv |
12 |
C *==========================================================* |
13 |
C | SUBROUTINE SEAICE_JFKF |
14 |
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
15 |
C | following J.-F. Lemieux et al. Improving the numerical |
16 |
C | convergence of viscous-plastic sea ice models with the |
17 |
C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229, |
18 |
C | 2840-2852 (2010). |
19 |
C | o The logic follows JFs code. |
20 |
C *==========================================================* |
21 |
C | written by Martin Losch, Oct 2012 |
22 |
C *==========================================================* |
23 |
C \ev |
24 |
|
25 |
C !USES: |
26 |
IMPLICIT NONE |
27 |
|
28 |
C === Global variables === |
29 |
#include "SIZE.h" |
30 |
#include "EEPARAMS.h" |
31 |
#include "PARAMS.h" |
32 |
#include "DYNVARS.h" |
33 |
#include "GRID.h" |
34 |
#include "SEAICE_SIZE.h" |
35 |
#include "SEAICE_PARAMS.h" |
36 |
#include "SEAICE.h" |
37 |
|
38 |
#ifdef ALLOW_AUTODIFF_TAMC |
39 |
# include "tamc.h" |
40 |
#endif |
41 |
|
42 |
C !INPUT/OUTPUT PARAMETERS: |
43 |
C === Routine arguments === |
44 |
C myTime :: Simulation time |
45 |
C myIter :: Simulation timestep number |
46 |
C myThid :: my Thread Id. number |
47 |
_RL myTime |
48 |
INTEGER myIter |
49 |
INTEGER myThid |
50 |
|
51 |
#if ( (defined SEAICE_CGRID) && \ |
52 |
(defined SEAICE_ALLOW_JFNK) && \ |
53 |
(defined SEAICE_ALLOW_DYNAMICS) ) |
54 |
|
55 |
C i,j,bi,bj :: loop indices |
56 |
INTEGER i,j,bi,bj |
57 |
C loop indices |
58 |
INTEGER newtonIter, newtonIterFail |
59 |
INTEGER krylovIter, krylovIterFail |
60 |
INTEGER totalKrylovIter |
61 |
C FGMRES flag that indicates what to do next |
62 |
INTEGER iCode |
63 |
_RL JFNKresidual, JFNKresidualTile(nSx,nSy) |
64 |
_RL JFNKresidualKm1 |
65 |
C parameters to compute convergence criterion |
66 |
_RL phi_e, alp_e, JFNKgamma_lin |
67 |
_RL FGMRESeps |
68 |
_RL JFNKtol |
69 |
C |
70 |
_RL recip_deltaT |
71 |
LOGICAL JFNKconverged, krylovConverged |
72 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
73 |
C |
74 |
C u/vIceRes :: residual of sea-ice momentum equations |
75 |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
76 |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
77 |
C du/vIce :: ice velocity increment to be added to u/vIce |
78 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
79 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
80 |
C precomputed (= constant per Newton iteration) versions of |
81 |
C zeta, eta, and DWATN, press |
82 |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
83 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
84 |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
85 |
_RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
86 |
CEOP |
87 |
|
88 |
C Initialise |
89 |
newtonIter = 0 |
90 |
newtonIterFail = 0 |
91 |
krylovIterFail = 0 |
92 |
totalKrylovIter = 0 |
93 |
JFNKconverged = .FALSE. |
94 |
JFNKtol = 0. _d 0 |
95 |
JFNKresidual = 0. _d 0 |
96 |
JFNKresidualKm1 = 0. _d 0 |
97 |
FGMRESeps = 0. _d 0 |
98 |
recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn |
99 |
C |
100 |
DO bj=myByLo(myThid),myByHi(myThid) |
101 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
102 |
DO J=1-Oly,sNy+Oly |
103 |
DO I=1-Olx,sNx+Olx |
104 |
uIceRes(I,J,bi,bj) = 0. _d 0 |
105 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
106 |
duIce (I,J,bi,bj) = 0. _d 0 |
107 |
dvIce (I,J,bi,bj) = 0. _d 0 |
108 |
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
109 |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
110 |
ENDDO |
111 |
ENDDO |
112 |
C Compute things that do no change during the Newton iteration: |
113 |
C sea-surface tilt and wind stress: |
114 |
C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT |
115 |
DO J=1-Oly,sNy+Oly |
116 |
DO I=1-Olx,sNx+Olx |
117 |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
118 |
& + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT |
119 |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
120 |
& + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT |
121 |
ENDDO |
122 |
ENDDO |
123 |
ENDDO |
124 |
ENDDO |
125 |
C Start nonlinear Newton iteration: outer loop iteration |
126 |
DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND. |
127 |
& .NOT.JFNKconverged ) |
128 |
newtonIter = newtonIter + 1 |
129 |
C Compute initial residual F(u), (includes computation of global |
130 |
C variables DWATN, zeta, and eta) |
131 |
CALL SEAICE_CALC_RESIDUAL( |
132 |
I uIce, vIce, |
133 |
O uIceRes, vIceRes, |
134 |
I newtonIter, 0, myTime, myIter, myThid ) |
135 |
CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid) |
136 |
C local copies of precomputed coefficients that are to stay |
137 |
C constant for the preconditioner |
138 |
DO bj=myByLo(myThid),myByHi(myThid) |
139 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
140 |
DO j=1-Oly,sNy+Oly |
141 |
DO i=1-Olx,sNx+Olx |
142 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
143 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
144 |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
145 |
pressPre(I,J,bi,bj) = press(I,J,bi,bj) |
146 |
ENDDO |
147 |
ENDDO |
148 |
ENDDO |
149 |
ENDDO |
150 |
C |
151 |
DO bj=myByLo(myThid),myByHi(myThid) |
152 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
153 |
JFNKresidualTile(bi,bj) = 0. _d 0 |
154 |
DO J=1,sNy |
155 |
DO I=1,sNx |
156 |
#ifdef CG2D_SINGLECPU_SUM |
157 |
JFNKlocalBuf(I,J,bi,bj) = |
158 |
#else |
159 |
JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) + |
160 |
#endif |
161 |
& uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) + |
162 |
& vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj) |
163 |
ENDDO |
164 |
ENDDO |
165 |
ENDDO |
166 |
ENDDO |
167 |
JFNKresidual = 0. _d 0 |
168 |
#ifdef CG2D_SINGLECPU_SUM |
169 |
CALL GLOBAL_SUM_SINGLECPU_RL( |
170 |
& JFNKlocalBuf,JFNKresidual, 0, 0, myThid) |
171 |
#else |
172 |
CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid ) |
173 |
#endif |
174 |
JFNKresidual = SQRT(JFNKresidual) |
175 |
C compute convergence criterion for linear preconditioned FGMRES |
176 |
JFNKgamma_lin = JFNKgamma_lin_max |
177 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.100 |
178 |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
179 |
C Eisenstat, 1996, equ.(2.6) |
180 |
phi_e = 1. _d 0 |
181 |
alp_e = 1. _d 0 |
182 |
JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e |
183 |
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
184 |
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
185 |
ENDIF |
186 |
C save the residual for the next iteration |
187 |
JFNKresidualKm1 = JFNKresidual |
188 |
C |
189 |
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
190 |
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
191 |
C down. |
192 |
C krylovIter is mapped into "its" in seaice_fgmres and is incremented |
193 |
C in that routine |
194 |
krylovIter = 0 |
195 |
iCode = 0 |
196 |
IF ( debugLevel.GE.debLevA ) THEN |
197 |
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
198 |
& ' S/R SEAICE_JFNK: newtonIter,', |
199 |
& ' total newtonIter, JFNKgamma_lin, initial norm = ', |
200 |
& newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter, |
201 |
& JFNKgamma_lin, JFNKresidual |
202 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
203 |
& SQUEEZE_RIGHT, myThid ) |
204 |
ENDIF |
205 |
C |
206 |
JFNKconverged = JFNKresidual.LT.JFNKtol |
207 |
C |
208 |
C do Krylov loop only if convergence is not reached |
209 |
C |
210 |
IF ( .NOT.JFNKconverged ) THEN |
211 |
C |
212 |
C start Krylov iteration (FGMRES) |
213 |
C |
214 |
krylovConverged = .FALSE. |
215 |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
216 |
DO WHILE ( .NOT.krylovConverged ) |
217 |
C solution vector sol = du/vIce |
218 |
C residual vector (rhs) Fu = u/vIceRes |
219 |
C output work vectors wk1, -> input work vector wk2 |
220 |
C |
221 |
CALL SEAICE_FGMRES_DRIVER( |
222 |
I uIceRes, vIceRes, |
223 |
U duIce, dvIce, iCode, |
224 |
I FGMRESeps, |
225 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
226 |
C FGMRES returns iCode either asking for an new preconditioned vector |
227 |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
228 |
C iteration |
229 |
IF (iCode.EQ.1) THEN |
230 |
C Call preconditioner |
231 |
CALL SEAICE_PRECONDITIONER( |
232 |
U duIce, dvIce, |
233 |
I zetaPre, etaPre, dwatPre, pressPre, |
234 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
235 |
ELSEIF (iCode.GE.2) THEN |
236 |
C Compute Jacobian times vector |
237 |
CALL SEAICE_JACVEC( |
238 |
I uIce, vIce, uIceRes, vIceRes, |
239 |
U duIce, dvIce, |
240 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
241 |
ENDIF |
242 |
krylovConverged = iCode.EQ.0 |
243 |
C End of Krylov iterate |
244 |
ENDDO |
245 |
totalKrylovIter = totalKrylovIter + krylovIter |
246 |
C some output diagnostics |
247 |
IF ( debugLevel.GE.debLevA ) THEN |
248 |
WRITE(msgBuf,'(3(A,I6))') |
249 |
& ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter, |
250 |
& ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter, |
251 |
& ', Nb. of FGMRES iterations = ', krylovIter |
252 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
253 |
& SQUEEZE_RIGHT, myThid ) |
254 |
ENDIF |
255 |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
256 |
krylovIterFail = krylovIterFail + 1 |
257 |
ENDIF |
258 |
C Update linear solution vector and return to Newton iteration |
259 |
DO bj=myByLo(myThid),myByHi(myThid) |
260 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
261 |
DO J=1-Oly,sNy+Oly |
262 |
DO I=1-Olx,sNx+Olx |
263 |
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj) |
264 |
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj) |
265 |
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
266 |
duIce(I,J,bi,bj)= 0. _d 0 |
267 |
dvIce(I,J,bi,bj)= 0. _d 0 |
268 |
ENDDO |
269 |
ENDDO |
270 |
ENDDO |
271 |
ENDDO |
272 |
C Set the stopping criterion for the Newton iteration |
273 |
IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual |
274 |
ENDIF |
275 |
C end of Newton iterate |
276 |
ENDDO |
277 |
C some output diagnostics |
278 |
IF ( debugLevel.GE.debLevA ) THEN |
279 |
C Record failure |
280 |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
281 |
newtonIterFail = newtonIterFail + 1 |
282 |
WRITE(msgBuf,'(A,I10)') |
283 |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
284 |
& myIter |
285 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
286 |
& SQUEEZE_RIGHT, myThid ) |
287 |
ENDIF |
288 |
IF ( krylovIterFail .GT. 0 ) THEN |
289 |
WRITE(msgBuf,'(A,I4,A,I10)') |
290 |
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
291 |
& krylovIterFail, ' times in timestep ', myIter |
292 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
293 |
& SQUEEZE_RIGHT, myThid ) |
294 |
ENDIF |
295 |
WRITE(msgBuf,'(A,I6)') |
296 |
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
297 |
& totalKrylovIter |
298 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
299 |
& SQUEEZE_RIGHT, myThid ) |
300 |
|
301 |
ENDIF |
302 |
|
303 |
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
304 |
|
305 |
RETURN |
306 |
END |