3 |
|
|
4 |
#include "SEAICE_OPTIONS.h" |
#include "SEAICE_OPTIONS.h" |
5 |
|
|
6 |
|
C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: |
7 |
|
C-- Contents |
8 |
|
C-- o SEAICE_JFNK |
9 |
|
C-- o SEAICE_JFNK_UPDATE |
10 |
|
|
11 |
CBOP |
CBOP |
12 |
C !ROUTINE: SEAICE_JFNK |
C !ROUTINE: SEAICE_JFNK |
13 |
C !INTERFACE: |
C !INTERFACE: |
15 |
|
|
16 |
C !DESCRIPTION: \bv |
C !DESCRIPTION: \bv |
17 |
C *==========================================================* |
C *==========================================================* |
18 |
C | SUBROUTINE SEAICE_JFKF |
C | SUBROUTINE SEAICE_JFNK |
19 |
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
20 |
C | following J.-F. Lemieux et al. Improving the numerical |
C | following J.-F. Lemieux et al. Improving the numerical |
21 |
C | convergence of viscous-plastic sea ice models with the |
C | convergence of viscous-plastic sea ice models with the |
147 |
newtonIter = newtonIter + 1 |
newtonIter = newtonIter + 1 |
148 |
C Compute initial residual F(u), (includes computation of global |
C Compute initial residual F(u), (includes computation of global |
149 |
C variables DWATN, zeta, and eta) |
C variables DWATN, zeta, and eta) |
150 |
CALL SEAICE_CALC_RESIDUAL( |
C Update linear solution vector and return to Newton iteration |
151 |
I uIce, vIce, |
C Do the linesearch |
152 |
O uIceRes, vIceRes, |
CALL SEAICE_JFNK_UPDATE( |
153 |
I newtonIter, 0, myTime, myIter, myThid ) |
I duIce, dvIce, |
154 |
C probably not necessary, will be removed later: |
U uIce, vIce, JFNKresidual, |
155 |
CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid) |
O uIceRes, vIceRes, |
156 |
|
I newtonIter, myTime, myIter, myThid ) |
157 |
|
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
158 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
159 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
160 |
|
DO J=1-Oly,sNy+Oly |
161 |
|
DO I=1-Olx,sNx+Olx |
162 |
|
duIce(I,J,bi,bj)= 0. _d 0 |
163 |
|
dvIce(I,J,bi,bj)= 0. _d 0 |
164 |
|
ENDDO |
165 |
|
ENDDO |
166 |
|
ENDDO |
167 |
|
ENDDO |
168 |
|
CMLC Do it again, Sam |
169 |
|
CML CALL SEAICE_CALC_RESIDUAL( |
170 |
|
CML I uIce, vIce, |
171 |
|
CML O uIceRes, vIceRes, |
172 |
|
CML I newtonIter, 0, myTime, myIter, myThid ) |
173 |
|
CMLC probably not necessary, will be removed later: |
174 |
|
CML CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid) |
175 |
|
CMLC Important: Compute the norm of the residual using the same scalar |
176 |
|
CMLC product that SEAICE_FGMRES does |
177 |
|
CML CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
178 |
|
CML CALL SEAICE_SCALPROD( |
179 |
|
CML & nVec,1,1,1,resTmp,resTmp,JFNKresidual,myThid) |
180 |
|
CML JFNKresidual = SQRT(JFNKresidual) |
181 |
C local copies of precomputed coefficients that are to stay |
C local copies of precomputed coefficients that are to stay |
182 |
C constant for the preconditioner |
C constant for the preconditioner |
183 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
192 |
ENDDO |
ENDDO |
193 |
ENDDO |
ENDDO |
194 |
ENDDO |
ENDDO |
|
C Important: Compute the norm of the residual using the same scalar |
|
|
C product that SEAICE_FGMRES does |
|
|
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
|
|
CALL SEAICE_SCALPROD( |
|
|
& nVec,1,1,1,resTmp,resTmp,JFNKresidual,myThid) |
|
|
JFNKresidual = SQRT(JFNKresidual) |
|
195 |
C compute convergence criterion for linear preconditioned FGMRES |
C compute convergence criterion for linear preconditioned FGMRES |
196 |
JFNKgamma_lin = JFNKgamma_lin_max |
JFNKgamma_lin = JFNKgamma_lin_max |
197 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.100 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.100 |
278 |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
279 |
krylovFails = krylovFails + 1 |
krylovFails = krylovFails + 1 |
280 |
ENDIF |
ENDIF |
281 |
|
C Set the stopping criterion for the Newton iteration |
282 |
|
IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual |
283 |
C Update linear solution vector and return to Newton iteration |
C Update linear solution vector and return to Newton iteration |
284 |
|
C Do a linesearch if necessary, and compute a new residual. |
285 |
|
C Note that it should be possible to do the following operations |
286 |
|
C at the beginning of the Newton iteration, thereby saving us from |
287 |
|
C the extra call of seaice_jfnk_update, but unfortunately that |
288 |
|
C changes the results, so we leave the stuff here for now. |
289 |
|
CALL SEAICE_JFNK_UPDATE( |
290 |
|
I duIce, dvIce, |
291 |
|
U uIce, vIce, JFNKresidual, |
292 |
|
O uIceRes, vIceRes, |
293 |
|
I newtonIter, myTime, myIter, myThid ) |
294 |
|
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
295 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
296 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
297 |
DO J=1-Oly,sNy+Oly |
DO J=1-Oly,sNy+Oly |
298 |
DO I=1-Olx,sNx+Olx |
DO I=1-Olx,sNx+Olx |
|
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj) |
|
|
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj) |
|
|
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
|
299 |
duIce(I,J,bi,bj)= 0. _d 0 |
duIce(I,J,bi,bj)= 0. _d 0 |
300 |
dvIce(I,J,bi,bj)= 0. _d 0 |
dvIce(I,J,bi,bj)= 0. _d 0 |
301 |
ENDDO |
ENDDO |
302 |
ENDDO |
ENDDO |
303 |
ENDDO |
ENDDO |
304 |
ENDDO |
ENDDO |
|
C Set the stopping criterion for the Newton iteration |
|
|
IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual |
|
305 |
ENDIF |
ENDIF |
306 |
C end of Newton iterate |
C end of Newton iterate |
307 |
ENDDO |
ENDDO |
416 |
_END_MASTER( myThid ) |
_END_MASTER( myThid ) |
417 |
ENDIF |
ENDIF |
418 |
|
|
419 |
|
RETURN |
420 |
|
END |
421 |
|
|
422 |
|
CBOP |
423 |
|
C !ROUTINE: SEAICE_JFNK_UPDATE |
424 |
|
C !INTERFACE: |
425 |
|
|
426 |
|
SUBROUTINE SEAICE_JFNK_UPDATE( |
427 |
|
I duIce, dvIce, |
428 |
|
U uIce, vIce, JFNKresidual, |
429 |
|
O uIceRes, vIceRes, |
430 |
|
I newtonIter, myTime, myIter, myThid ) |
431 |
|
|
432 |
|
C !DESCRIPTION: \bv |
433 |
|
C *==========================================================* |
434 |
|
C | SUBROUTINE SEAICE_JFNK_UPDATE |
435 |
|
C | o Update velocities with incremental solutions of FGMRES |
436 |
|
C | o compute residual of updated solutions and do |
437 |
|
C | o linesearch: |
438 |
|
C | reduce update until residual is smaller than previous |
439 |
|
C | one (input) |
440 |
|
C *==========================================================* |
441 |
|
C | written by Martin Losch, Jan 2013 |
442 |
|
C *==========================================================* |
443 |
|
C \ev |
444 |
|
|
445 |
|
C !USES: |
446 |
|
IMPLICIT NONE |
447 |
|
|
448 |
|
C === Global variables === |
449 |
|
#include "SIZE.h" |
450 |
|
#include "EEPARAMS.h" |
451 |
|
#include "PARAMS.h" |
452 |
|
#include "SEAICE_SIZE.h" |
453 |
|
#include "SEAICE_PARAMS.h" |
454 |
|
|
455 |
|
C !INPUT/OUTPUT PARAMETERS: |
456 |
|
C === Routine arguments === |
457 |
|
C myTime :: Simulation time |
458 |
|
C myIter :: Simulation timestep number |
459 |
|
C myThid :: my Thread Id. number |
460 |
|
C newtonIter :: current iterate of Newton iteration |
461 |
|
_RL myTime |
462 |
|
INTEGER myIter |
463 |
|
INTEGER myThid |
464 |
|
INTEGER newtonIter |
465 |
|
C JFNKresidual :: Residual at the beginning of the FGMRES iteration, |
466 |
|
C changes with newtonIter (updated) |
467 |
|
_RL JFNKresidual |
468 |
|
C du/vIce :: ice velocity increment to be added to u/vIce (input) |
469 |
|
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
470 |
|
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
471 |
|
C u/vIce :: ice velocity increment to be added to u/vIce (updated) |
472 |
|
_RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
473 |
|
_RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
474 |
|
C u/vIceRes :: residual of sea-ice momentum equations (output) |
475 |
|
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
476 |
|
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
477 |
|
|
478 |
|
C Local variables: |
479 |
|
C i,j,bi,bj :: loop indices |
480 |
|
INTEGER i,j,bi,bj |
481 |
|
INTEGER l |
482 |
|
_RL resLoc, facLS |
483 |
|
LOGICAL doLineSearch |
484 |
|
C nVec :: size of the input vector(s) |
485 |
|
C vector version of the residuals |
486 |
|
INTEGER nVec |
487 |
|
PARAMETER ( nVec = 2*sNx*sNy ) |
488 |
|
_RL resTmp (nVec,1,nSx,nSy) |
489 |
|
C |
490 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
491 |
|
CEOP |
492 |
|
|
493 |
|
C Initialise some local variables |
494 |
|
l = 0 |
495 |
|
resLoc = JFNKresidual |
496 |
|
facLS = 1. _d 0 |
497 |
|
doLineSearch = .TRUE. |
498 |
|
DO WHILE ( doLineSearch ) |
499 |
|
C Determine, if we need more iterations |
500 |
|
doLineSearch = resLoc .GE. JFNKresidual |
501 |
|
doLineSearch = doLineSearch .AND. l .LE. 4 |
502 |
|
C For the first iteration du/vIce = 0 and there will be no |
503 |
|
C improvement of the residual possible, so we do only the first |
504 |
|
C iteration |
505 |
|
IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. |
506 |
|
C Only start a linesearch after some Newton iterations |
507 |
|
IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. |
508 |
|
C Increment counter |
509 |
|
l = l + 1 |
510 |
|
C Create update |
511 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
512 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
513 |
|
DO J=1-Oly,sNy+Oly |
514 |
|
DO I=1-Olx,sNx+Olx |
515 |
|
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) |
516 |
|
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) |
517 |
|
ENDDO |
518 |
|
ENDDO |
519 |
|
ENDDO |
520 |
|
ENDDO |
521 |
|
C Compute current residual F(u), (includes re-computation of global |
522 |
|
C variables DWATN, zeta, and eta, i.e. they are different after this) |
523 |
|
CALL SEAICE_CALC_RESIDUAL( |
524 |
|
I uIce, vIce, |
525 |
|
O uIceRes, vIceRes, |
526 |
|
I newtonIter, 0, myTime, myIter, myThid ) |
527 |
|
C Important: Compute the norm of the residual using the same scalar |
528 |
|
C product that SEAICE_FGMRES does |
529 |
|
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
530 |
|
CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) |
531 |
|
resLoc = SQRT(resLoc) |
532 |
|
C some output diagnostics |
533 |
|
IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN |
534 |
|
_BEGIN_MASTER( myThid ) |
535 |
|
WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') |
536 |
|
& ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', |
537 |
|
& 'facLS, JFNKresidual, resLoc = ', |
538 |
|
& newtonIter, l, facLS, JFNKresidual, resLoc |
539 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
540 |
|
& SQUEEZE_RIGHT, myThid ) |
541 |
|
_END_MASTER( myThid ) |
542 |
|
ENDIF |
543 |
|
C Get ready for the next iteration: after adding du/vIce in the first |
544 |
|
C iteration, we substract 0.5*du/vIce from u/vIce in the next |
545 |
|
C iterations, 0.25*du/vIce in the second, etc. |
546 |
|
facLS = - 0.5 _d 0 * ABS(facLS) |
547 |
|
ENDDO |
548 |
|
C This is the new residual |
549 |
|
JFNKresidual = resLoc |
550 |
|
|
551 |
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
552 |
|
|
553 |
RETURN |
RETURN |