| 78 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 79 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 80 |
C precomputed (= constant per Newton iteration) versions of |
C precomputed (= constant per Newton iteration) versions of |
| 81 |
C zeta, eta, and DWATN |
C zeta, eta, and DWATN, press |
| 82 |
_RL zetaPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 83 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 84 |
_RL dwatPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 85 |
|
_RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 86 |
CEOP |
CEOP |
| 87 |
|
|
| 88 |
C Initialise |
C Initialise |
| 138 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 139 |
DO j=1-Oly,sNy+Oly |
DO j=1-Oly,sNy+Oly |
| 140 |
DO i=1-Olx,sNx+Olx |
DO i=1-Olx,sNx+Olx |
| 141 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
| 142 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
| 143 |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
| 144 |
|
pressPre(I,J,bi,bj) = press(I,J,bi,bj) |
| 145 |
ENDDO |
ENDDO |
| 146 |
ENDDO |
ENDDO |
| 147 |
ENDDO |
ENDDO |
| 231 |
C Call preconditioner |
C Call preconditioner |
| 232 |
CALL SEAICE_PRECONDITIONER( |
CALL SEAICE_PRECONDITIONER( |
| 233 |
U duIce, dvIce, |
U duIce, dvIce, |
| 234 |
I zetaPre, etaPre, dwatPre, |
I zetaPre, etaPre, dwatPre, pressPre, |
| 235 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 236 |
ELSEIF (iCode.GE.2) THEN |
ELSEIF (iCode.GE.2) THEN |
| 237 |
C Compute Jacobian times vector |
C Compute Jacobian times vector |